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Preface

MATLAB is a high-level technical computing language and interactive
environment for algorithm development, data visualization, data analysis,
and numerical computation. Using MATLAB, you can solve technical
computing problems faster than with traditional programming languages,
such as C, C++, and Fortran. – The MathWorks, Inc.

That statement encapsulates the view of The MathWorks, Inc., the developer of MAT-
LAB®. MATLAB 7 is an ambitious program. It contains hundreds of commands to
do mathematics. You can use it to graph functions, solve equations, perform statistical
tests, and much more. It is a high-level programming language that can communicate
with its cousins, e.g., Fortran and C. You can produce sound and animate graphics.
You can do simulations and modeling (especially if you have access not just to basic
MATLAB but also to its accessory Simulink®). You can prepare materials for export
to the World Wide Web. In addition, you can use MATLAB to combine mathemat-
ical computations with text and graphics in order to produce a polished, integrated,
interactive document.

A program this sophisticated contains many features and options. There are liter-
ally hundreds of useful commands at your disposal. The MATLAB help documenta-
tion contains thousands of entries. The standard references, whether the MathWorks
User’s Guide for the product, or any of our competitors, contain a myriad of tables
describing an endless stream of commands, options, and features that the user might
be expected to learn or access.

MATLAB is more than a fancy calculator; it is an extremely useful and versatile
tool. Even if you know only a little about MATLAB, you can use it to accomplish
wonderful things. The hard part, however, is figuring out which of the hundreds of
commands, scores of help pages, and thousands of items of documentation you need
to look at to start using it quickly and effectively.

That’s where we come in.

Why We Wrote This Book

The goal of this book is to get you started using MATLAB successfully and quickly.
We point out the parts of MATLAB you need to know without overwhelming you
with details. We help you avoid the rough spots. We give you examples of real uses
of MATLAB that you can refer to when you’re doing your own work. We provide
a handy reference to the most useful features of MATLAB. When you’ve finished
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xii Preface

reading this book, you will be able to use MATLAB effectively. You’ll also be ready
to explore more of MATLAB on your own.

You might not be a MATLAB expert when you finish this book, but you will be
prepared to become one – if that’s what you want. We figure you’re probably more
interested in being an expert at your own specialty, whether that’s finance or physics,
psychology or engineering. You want to use MATLAB the way we do, as a tool.
This book is designed to help you become a proficient MATLAB user as quickly as
possible, so you can get on with the business at hand.

Who Should Read This Book

This book will be useful to complete novices, occasional users who want to sharpen
their skills, intermediate or experienced users who want to learn about the new fea-
tures of MATLAB 7, or who want to learn how to use Simulink, and even experts who
want to find out whether we know anything they don’t.

You can read through this guide to learn MATLAB on your own. If your employer
(or your professor) has plopped you in front of a computer with MATLAB and told
you to learn how to use it, then you’ll find the book particularly useful. If you are
teaching or taking a course in which you want to use MATLAB as a tool to explore
another subject – whether in mathematics, science, engineering, business, or statistics
– this book will make a perfect supplement.

As mentioned, we wrote this guide for use with MATLAB 7. If you plan to
continue using MATLAB 5 or MATLAB 6, however, you can still profit from this
book. Virtually all of the material on MATLAB commands in this book applies to all
these versions. The primary features of MATLAB 7 not found in earlier versions are
anonymous functions, discussed in Chapter 2, and publishing, discussed in Chapters
3 and 7. Beyond that, only a small amount of material on the MATLAB interface,
found mainly in Chapters 1, 3, and 9, does not apply to MATLAB 5.

How This Book Is Organized

In writing, we used our experience to focus on providing important information as
quickly as possible. The book contains a short, focused introduction to MATLAB. It
contains practice problems (with complete solutions) so you can test your knowledge.
There are several illuminating sample projects that show you how MATLAB can be
used in real-world applications and an entire chapter on troubleshooting.

The core of this book consists of about 70 pages: Chapters 1–4, and the beginning
of Chapter 5. Read that much and you’ll have a good grasp of the fundamentals of
MATLAB. Read the rest – the remainder of the Graphics chapter as well as the chap-
ters on Programming, Publishing, Simulink, GUIs, Applications, Troubleshooting,
and the Glossary – and you’ll know enough to do a great deal with MATLAB.

Here is a detailed summary of the contents of the book.
Chapter 1, Getting Started, describes how to start MATLAB on various platforms.

It tells you how to enter commands, how to access online help, how to recognize the
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various MATLAB windows you will encounter, and how to exit the application.
Chapter 2, MATLAB Basics, shows you how to do elementary mathematics using

MATLAB. This chapter contains the most essential MATLAB commands.
Chapter 3, Interacting with MATLAB, contains an introduction to the MATLAB

Desktop interface. This chapter will introduce you to the basic window features of
the application, to the small program files (M-files) that you will use to make the most
effective use of the software, and to a few methods for presenting the results of your
MATLAB sessions. After completing this chapter, you’ll have a better appreciation
of the breadth described in the quote that opens this Preface.

Practice Set A, Algebra and Arithmetic, contains some simple problems for prac-
ticing your newly acquired MATLAB skills. Solutions are presented at the end of the
book.

Chapter 4, Beyond the Basics, contains an explanation of some of the finer points
that are essential for using MATLAB effectively.

Chapter 5, MATLAB Graphics, contains a more detailed look at many of the MAT-
LAB commands for producing graphics.

Practice Set B, Calculus, Graphics, and Linear Algebra, gives you another chance
to practice what you’ve just learned. As before, solutions are provided at the end of
the book.

Chapter 6, Programming, introduces you to the programming features of MAT-
LAB. This chapter is designed to be useful both to the novice programmer and to the
experienced Fortran or C programmer.

Chapter 7, Publishing and M-Books, contains an introduction to the word-pro-
cessing and desktop-publishing features available in MATLAB 7, either using M-files
and the publish command or else combining MATLAB with Microsoft Word.

Chapter 8, Simulink, describes the MATLAB companion software Simulink, a
graphically oriented package for modeling, simulating, and analyzing dynamical sys-
tems. Many of the calculations that can be done with MATLAB can be done equally
well with Simulink. If you don’t have access to Simulink, you may skip Chapter 8.

Chapter 9, GUIs, contains an introduction to the construction and deployment of
Graphical User Interfaces, that is GUIs, using MATLAB. This chapter is a little more
advanced than most of the others.

Chapter 10, Applications, contains examples, from many different fields, of solu-
tions of real-world problems using MATLAB and/or Simulink.

Practice Set C, Developing Your MATLAB Skills, contains practice problems whose
solutions use the methods and techniques you learned in Chapters 6–10.

Chapter 11, Troubleshooting, is the place to turn when anything goes wrong.
Many common problems can be resolved by reading (and rereading) the advice in
this chapter.

Next, we have Solutions to the Practice Sets, which contains solutions to all the
problems from the three Practice Sets. The Glossary contains short descriptions (with
examples) of many MATLAB commands and objects. Though it is not a complete
reference, the Glossary is a handy guide to the most important features of MATLAB.
Finally, there is a comprehensive Index.
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Conventions Used in This Book

We use distinct fonts to distinguish various entities. When new terms are first in-
troduced, they are typeset in an italic font. Output from MATLAB is typeset in a
monospaced typewriter font; commands that you type for interpretation by
MATLAB are indicated by a boldface version of that font. These commands and
responses are often displayed on separate lines as they would be in a MATLAB ses-
sion, as in the following example:

>> x = sqrt(2*pi + 1)

x =
2.697

Selectable menu items (from the menu bars in the MATLAB Desktop, figure win-
dows, etc.) are typeset in a boldface font. Submenu items are separated from menu
items by a colon, as in File:Open.... Labels such as the names of windows and buttons
are quoted, in a “regular” font. File and folder names, as well as web addresses, are
printed in a typewriter font. Finally, names of keys on your computer keyboard
are set in a SMALL CAPS font.

We use six special symbols throughout the book. Here they are, together with
their meanings.

☞ Paragraphs like this one contain cross-references to other parts of the book,
or suggestions of where you can skip ahead to another chapter.

➯ Paragraphs like this one contain important notes. Our favorite is “Save
your work frequently.” Pay careful attention to these paragraphs.

✓ Paragraphs like this one contain useful tips or point out features of interest in
the surrounding landscape. You might not need to think carefully about them
on a first reading, but they may draw your attention to some of the finer points
of MATLAB if you go back to them later.

✰ Chapters, sections, or problems starting with this symbol are a little more advanced
than the rest of the book, and can be skipped on first reading if you wish.

Symbolic Paragraphs like this discuss features of MATLAB’s Symbolic Math Toolbox,
used for symbolic (as opposed to numerical) calculations. If you are not using the
Symbolic Math Toolbox, you can skip these sections.

Paragraphs like this discuss features of Simulink. If you are not using Simulink,
you can skip these sections.

Incidentally, if you are a student and you have purchased the MATLAB Student
Version, then the Symbolic Math Toolbox and Simulink are automatically included
with your software, along with basic MATLAB.
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Chapter 1

Getting Started

In this chapter, we will introduce you to the tools you need in order to begin using
MATLAB effectively. These include the following: some relevant information on
computer platforms and software; installation protocols; how to launch MATLAB,
enter commands and use online help; a roster of MATLAB’s various windows; and
finally, how to exit the program. We know you are anxious to get started using MAT-
LAB, so we will keep this chapter brief. After you complete it, you can go immedi-
ately to Chapter 2 to find concrete and simple instructions for using MATLAB to do
mathematics. We describe the MATLAB interface more elaborately in Chapter 3.

Platforms and Versions

It is likely that you will use MATLAB on a computer running Microsoft Windows or
on some form of a UNIX operating system (such as Linux). Some previous versions
of MATLAB (Releases 11 and 12) did not support Macintosh, but the most current
versions (Releases 13 and 14) do. If you are using a Macintosh, you should find that
our instructions for Windows will suffice for most of your needs. Like MATLAB
6 (Releases 12 and 13), and unlike earlier versions, MATLAB 7 (Release 14) looks
virtually identical on these different platforms. For definitiveness, we shall assume
that the reader is using a Windows computer. In those very few instances where our
instructions must be tailored differently for Linux, UNIX, or Macintosh users, we
shall point it out clearly.

✓ We use the word Windows to refer to all flavors of the Windows operating
system. MATLAB 7 (R14) will run on Windows 2000, Windows NT (4.0
and higher), and on Windows XP. MATLAB 7 will not run on Windows 95,
Windows 98, or on Windows ME. However, MATLAB 6.5 (R13) does run on
Windows 98 or Windows ME.

This book is written to be compatible with the current version of MATLAB,
namely MATLAB 7 (R14). The vast majority of the MATLAB commands we de-
scribe, as well as many features of the MATLAB interface (e.g., the M-file Edi-
tor/Debugger and M-books) are valid for version 6.5 (R13), and earlier versions in
some cases. When important differences between different versions arise, we will
point them out. We also note that the differences between the MATLAB Professional
Version and the MATLAB Student Version are rather minor, and virtually unnotice-
able to a beginner, or even a mid-level user. Again, in the few instances where we

1



2 Chapter 1. Getting Started

describe a MATLAB feature that is available only in the Professional Version, we
highlight that fact clearly.

Installation

If you intend to run MATLAB, especially the Student Version, on your own computer,
it is quite possible that you will have to install it yourself. You can easily accomplish
this using the product CDs. Follow the installation instructions as you would with
installation of any new software. At some point in the installation you may be asked
which toolboxes you wish to install. Unless you have severe space limitations, we
suggest that you install any that seem of interest to you or that you think you might
use at some point in the future. However, for the purposes of this book, you should be
sure to include the Symbolic Math Toolbox. We also strongly encourage you to install
Simulink, which is described in Chapter 8.

Starting MATLAB

You start MATLAB as you would any other software application. In Windows, you
access it via the Start menu, under a name like MATLAB 7.0 or Student MATLAB.
Alternatively, you may have a desktop icon that enables you to start MATLAB with
a simple double-click. In Linux or UNIX, generally you need only type matlab in
a terminal window, though you may first have to find the bin subdirectory of the
MATLAB installation directory and add it to your path. Or you may have an icon on
your desktop that achieves the task.

However you start MATLAB, you will briefly see a window that displays the
MATLAB logo as well as some product information, and then a MATLAB Desktop
window will launch. That window will contain a title bar, a menu bar, a tool bar
and four embedded windows, one of which is hidden. The largest and most important
window is the Command Window on the right. We will go into more detail in Chap-
ter 3 on the use and manipulation of the other three windows: the Command History
Window, the Current Directory Browser and the Workspace Browser. For now we
concentrate on the Command Window in order to get you started issuing MATLAB
commands as quickly as possible. At the top of the Command Window, you may
see some general information about MATLAB, perhaps some special instructions for
getting started or accessing help, but most important of all, you will see a command
prompt (>> or EDU>>). If the Command Window is “active,” its title bar will be
dark, and the prompt will be followed by a cursor (a blinking vertical line). That
is the place where you will enter your MATLAB commands (see Chapter 2). If the
Command Window is not active, just click in it anywhere. Figure 1.1 contains an
example of a newly launched MATLAB Desktop.
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Figure 1.1. A MATLAB Desktop.

✓ MATLAB 6 has a Desktop, but in older versions of MATLAB, for example
5.3, there was no integrated Desktop. Only the Command Window appeared
when you launched the application. (On UNIX systems, the terminal win-
dow from which you invoked MATLAB 5 became the Command Window.)
Commands that we instruct you to enter in the Command Window inside the
Desktop for MATLAB can be entered directly into the Command Window in
any older version.

Typing in the Command Window

Click in the Command Window to make it active. When a window becomes active,
its title bar darkens and a blinking cursor appear after the prompt. Now you can begin
entering commands. Try typing 2+2, then press the ENTER or RETURN key. Next try
factor(123456789), and finally sin(100). Your MATLAB Desktop should
look like Figure 1.2.

Online Help

MATLAB has extensive online help. In fact, using only this book and the online help,
you should be able to become quite proficient with MATLAB.

You can access the online help in one of several ways. Typing help at the com-
mand prompt will reveal a long list of topics for which help is available. Just to
illustrate, try typing help general. Now you see a long list of “general purpose”
MATLAB commands. Next, try help factor to learn about the factor com-
mand. In every instance above, more information than your screen can hold will
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Figure 1.2. The MATLAB Desktop with Several Commands Evaluated.

scroll by. You can use the scroll bar on the right of the window to scroll back up.
Alternatively, you can force MATLAB to display information one screenful at a time
by typing more on. You press the space bar to display the next screenful; type help
more for details. Typing more on affects all subsequent commands, until you type
more off.

The lookfor command searches the first line of every MATLAB help file for a
specified string (use lookfor -all to search all lines). For example, if you wanted
to see a list of all MATLAB commands that contain the word “factor” as part of the
command name or brief description, then you would type lookfor factor. If
the command you are looking for appears in the list, then you can use help on that
command to learn more about it.

While help in the Command Window is useful for getting quick information on
a particular command, more extensive documentation is available via the MATLAB
Help Browser. You can activate it in several ways, for example, by typing doc at
the command prompt. Alternatively, it is available through the menu bar under Help.
Finally, the question-mark button on the tool bar will also invoke the Help Browser.
Upon its launch you will see two windows or panes. The first is called the Help
Navigator; it is used to find documentation. The second, called the display pane, is
used for viewing documentation. The display pane works much like a normal web
browser. It has an address window, buttons for moving forward and back (among the
windows you have visited), hyperlinks for moving around in the documentation, the
capability of storing favorite pages, and other useful tools.

A particularly useful way to invoke the Help Browser is to type, for example,
doc sin. This launches the Help Browser and displays the reference page for sin.
The reference page for a command is generally similar to the text available (through
help), but sometimes has more information.
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You can also use the Help Navigator to locate the documentation that you will
explore in the display pane. The Help Navigator has four tabs that allow you to
arrange your search for documentation in different ways. The first is the Contents tab
that displays a tree view of all the documentation topics available. The extent of that
tree will be determined by how much you (or your system administrator) included in
the original MATLAB installation (how many toolboxes, etc.). The second tab is an
Index that displays all available documentation in index format. It responds to your
key entry of likely items you want to investigate in the usual alphabetic reaction mode.
The third tab provides the Search mechanism. You type in what you seek, either a
function or some other descriptive term, and the search engine locates documentation
pertaining to your entry. Finally, the fourth tab is a small collection of Demos that
you can run to learn more about MATLAB. Clicking on an item that appears in any
of these tabs brings up the corresponding documentation in the display pane.

The Help Browser has an excellent tutorial describing its own operation. To view
it, open the browser and select Help:Using the Help Browser from its menu bar. The
Help Browser is a powerful and easy-to-use aid in finding the information you need
on various features of MATLAB. Like any such tool, the more you use it, the more
adept you become at its use. Figure 1.3 depicts the MATLAB Help Browser.

Figure 1.3. The MATLAB Help Browser.

✓ If you are working with MATLAB version 5.3 or earlier, then typing help,
help general or help factor at the command prompt will work as
indicated above. The Help Browser is not available, but the commands
helpwin and helpdesk call up more primitive, although still quite useful,
forms of help windows.

If you are patient, and not overly anxious to get to Chapter 2, you can type demo
to try some of MATLAB’s online demonstrations.
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MATLAB Windows

We have already described the MATLAB Command Window and the Help Browser,
and have mentioned in passing the Command History Window, the Current Directory
Browser, and the Workspace Browser. These, and several other windows you will
encounter as you work with MATLAB, will allow you to do the following: control
files and folders that you and MATLAB will need to access; write and edit the small
MATLAB programs (M-files) that you will use to run MATLAB effectively; keep
track of the variables and functions that you define as you use MATLAB; display and
manipulate graphics; and design models to solve problems and simulate processes.
Some of these windows launch separately, and some are embedded in the Desktop.
You can dock into the Desktop those that launch separately through their Desktop
menus, or by clicking on the downward curved arrow in their tool bars. You can
separate windows inside your MATLAB Desktop out to your computer desktop by
clicking on the upward curved arrow in the upper right-hand corner of the window’s
tool bar.

These features are described more thoroughly in later chapters. For now, we want
to call your attention to the other main type of window you will encounter, namely
graphics windows. Many of the commands you issue will generate graphics or pic-
tures. These will appear in a separate window, called a figure window. In Chapter 5,
we will teach you how to generate and manipulate MATLAB figure windows most
effectively.

See Figure 2.1 in Chapter 2 for a simple example of a figure window.

✓ In MATLAB 6 or earlier versions, you cannot dock figure windows. Nor can
you in version 7 if you are using a Macintosh.

Ending a Session

The simplest way to conclude a MATLAB session is to type quit at the prompt. You
can also click on the button that generally closes your windows (usually an × in the
upper right-hand corner). Still another way to exit is to use the Exit MATLAB item
from the File menu of the Desktop. Before you exit MATLAB, you should be sure
to save your work, print any graphics or other files you need, and in general clean up
after yourself. Some strategies for doing so are discussed in Chapter 3.



Chapter 2

MATLAB Basics

In this chapter, you will start learning how to use MATLAB to do mathematics. We
recommend that you read this chapter while running MATLAB. Try the commands as
you go along. Feel free to experiment with variants of the examples we present; the
best way to find out how MATLAB responds to a command is to try it.

☞ For further practice, you can work the problems in Practice Set A. You may
also consult the Glossary for a synopsis of many MATLAB operators, con-
stants, functions, commands, and programming instructions.

Input and Output

You input commands to MATLAB in the Command Window. MATLAB returns out-
put in two ways: typically, text or numerical output is returned in the same Command
Window, but graphical output appears in a separate figure window. A sample screen,
with both a MATLAB Desktop and a figure window, labeled “Figure 1”, is shown in
Figure 2.1. To generate this screen on your computer, first type 1/2 + 1/3. Then
type ezplot(’xˆ3 - x’).

Figure 2.1. MATLAB Windows.

7



8 Chapter 2. MATLAB Basics

✓ While MATLAB is working, it may display a “wait” symbol – for example,
an hourglass appears on many operating systems. Or it may give no visual
evidence until it is finished with its calculation.

Arithmetic

As we have just seen, you can use MATLAB to do arithmetic as you would a cal-
culator. You can add with +, subtract with -, multiply with *, divide with /, and
exponentiate with ˆ. For example:

>> 3ˆ2 - (5 + 4)/2 + 6*3

ans =
22.5000

MATLAB prints the answer and assigns the value to a variable called ans. If you
want to perform further calculations with the answer, you can use the variable ans
rather than retype the answer. For example, you can compute the sum of the square
and the square root of the previous answer as follows:

>> ansˆ2 + sqrt(ans)

ans =
510.9934

Observe that MATLAB assigns a new value to answith each calculation. To do more
complex calculations, you can assign computed values to variables of your choosing.
For example:

>> u = cos(10)

u =
-0.8391

>> v = sin(10)

v =
-0.5440

>> uˆ2 + vˆ2

ans =
1

✓ Notice that trigonometric functions in MATLAB use radians, not degrees.

MATLAB uses double-precision floating-point arithmetic, which is accurate to
approximately 15 digits; however, MATLAB displays only 5 digits by default. To
display more digits, type format long. Then all subsequent numerical output will
have 15 digits displayed. Type format short to return to 5-digit display.

MATLAB differs from a calculator in that it can do exact arithmetic. For example,
it can add the fractions 1/2 and 1/3 symbolically to obtain the correct fraction 5/6.
We discuss how to do this in the section Symbolic Expressions, Variable Precision,
and Exact Arithmetic later in this chapter.
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Recovering from Problems

Inevitably, when using any mathematical software system, you are bound to encounter
minor glitches. Even while entering simple arithmetic commands, you may acciden-
tally mistype an entry or inadvertently violate a MATLAB rule. In this brief section,
we mention three methods for coping with these kinds of problems.

Errors in Input

If you make an error in an input line, MATLAB will normally print an error message.
For example, here’s what happens when you try to evaluate 3uˆ2:

>> 3uˆ2

??? 3uˆ2
|

Error: Missing MATLAB operator.

The error is a missing multiplication operator *. The correct input would be
3*uˆ2. Note that MATLAB places a marker (a vertical line segment) at the place
where it thinks the error might be; however, the actual error may have occurred earlier
or later in the expression.

✓ The error message generated in MATLAB 7.0.4 (the latest upgrade as this is
written) is somewhat different. You will find that error and warning messages
you encounter may vary with versions of the program.

➯ Missing multiplication operators and parentheses are among the most
common input errors made by beginning users.

☞ Recall our discussion of online help in Chapter 1. If you can’t decipher an
error message caused by a MATLAB command, refer to the online help for
that command, or use the search feature of the Help Browser.

You can edit an input line by using the UP-ARROW key to redisplay the previous
command, editing the command using the LEFT- and RIGHT-ARROW keys, and then
pressing RETURN or ENTER. The UP- and DOWN-ARROW keys allow you to scroll
back and forth through all the commands you’ve typed in a MATLAB session, and
are very useful when you want to correct, modify, or reenter a previous command.

Aborting Calculations

If MATLAB gets hung up in a calculation, or seems to be taking too long to perform
an operation, you can usually abort it by typing CTRL+C; that is, hold down the key
labeled CTRL, or CONTROL, and press C. While not foolproof, this is the method of
choice when MATLAB is not responding.
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Algebraic or Symbolic Computation

Symbolic Using MATLAB’s Symbolic Math Toolbox, you can carry out algebraic or
symbolic calculations such as factoring polynomials or solving algebraic equations.
Type help symbolic to make sure that the Symbolic Math Toolbox is installed on
your system.

To perform symbolic computations, you must use syms to declare the variables
you plan to use to be symbolic variables. Consider the following series of commands:

>> syms x y
>> (x - y)*(x - y)ˆ2

ans =
(x-y)ˆ3

>> expand(ans)

ans =
xˆ3-3*xˆ2*y+3*x*yˆ2-yˆ3

>> factor(ans)

ans =
(x-y)ˆ3

✓ Notice that symbolic output is left-justified, while numerical output is in-
dented. This feature is often useful in distinguishing symbolic output from
numerical output.

Although MATLAB makes minor simplifications to the expressions you type,
it does not make major changes unless you tell it to. The command expand told
MATLAB to multiply out the expression, and factor forced MATLAB to restore it
to factored form.

MATLAB has a command called simplify, which you can sometimes use to
express a formula as simply as possible. For example,

>> simplify((xˆ3 - yˆ3)/(x - y))

ans =
xˆ2+x*y+yˆ2

✓ MATLAB has a more robust command, called simple, that sometimes does
a better job than simplify. Try both commands on the trigonometric
expression sin(x)*cos(y) + cos(x)*sin(y) to compare – you’ll
have to read the online help for simple to completely understand the an-
swer.

Substituting in Symbolic Expressions

When you work with symbolic expressions you often need to substitute a numerical
value, or even another symbolic expression, for one (or more) of the original variables
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in the expression. This is done by using the subs command. For example, presuming
that the symbol expression w is defined and it involves the symbolic variable u, then
the command subs(w, u, 2) will substitute the value 2 for the variable u in the
expression w. More examples:

>> d = 1, syms u v

d =
1

>> w = uˆ2 - vˆ2

w =
uˆ2-vˆ2

>> subs(w, u, 2)

ans =
4-vˆ2

>> subs(w, v, d)

ans =
uˆ2-1

>> subs(w, v, u + v)

ans =
uˆ2-(u+v)ˆ2

>> simplify(ans)

ans =
-2*u*v-vˆ2

✓ When you enter multiple commands on a single line separated by commas,
MATLAB evaluates each command and displays the output on separate lines.
In the first input line above, the second command produced no output, so we
only saw output from the first command.

Symbolic Expressions, Variable Precision, and Exact Arithmetic

As we have noted, MATLAB uses floating-point arithmetic for its calculations. Using
the Symbolic Math Toolbox, you can also do exact arithmetic with symbolic expres-
sions. Consider the following example:

>> cos(pi/2)

ans =
6.1232e-17

The answer is written in floating-point format and means 6.1232 × 10−17. However,
we know that cos(π/2) is really equal to 0. The inaccuracy is due to the fact that
typing pi in MATLAB gives an approximation to π accurate to about 15 digits, not
its exact value. To compute an exact answer, instead of an approximate answer, we
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must create an exact symbolic representation of π/2 by typing sym(’pi/2’). Now
let’s take the cosine of the symbolic representation of π/2:

>> cos(sym(’pi/2’))

ans =
0

This is the expected answer.
The quotes around pi/2 in sym(’pi/2’) create a string consisting of the char-

acters pi/2 and prevent MATLAB from evaluating pi/2 as a floating-point number.
The command sym converts the string to a symbolic expression.

The commands sym and syms are closely related. In fact, syms x is equivalent
to x = sym(’x’). The command syms has a lasting effect on its argument. In
fact, even if x was previously defined, syms x clears that definition and renders x a
symbolic variable – which it remains until (if ever) it is redefined. On the other hand,
sym has only a temporary effect unless you assign the output to a variable, as in x =
sym(’x’).

Here is how to add 1/2 and 1/3 symbolically:

>> sym(’1/2’) + sym(’1/3’)

ans =
5/6

Finally, you can also do variable-precision arithmetic with vpa. For example, to
print 50 digits of

√
2, type:

>> vpa(’sqrt(2)’, 50)

ans =
1.4142135623730950488016887242096980785696718753769

If you don’t specify the number of digits, the default setting is 32. You can change
the default with the command digits.

➯ You should be wary of using sym or vpa on an expression that MATLAB
must evaluate before applying variable-precision arithmetic. To illus-
trate, evaluate the expressions 3ˆ45, vpa(3ˆ45), and vpa(’3ˆ45’).
The first gives a floating-point approximation to the answer, the second
– because MATLAB carries only 16-digit precision in its floating-point
evaluation of the exponentiation – gives an answer that is correct only in
its first 16 digits, and the third gives the exact answer.

☞ See the section Symbolic and Floating-Point Numbers in Chapter 4 for details
about how MATLAB converts between symbolic and floating-point numbers.

Vectors and Matrices

MATLAB was written originally to allow mathematicians, scientists, and engineers
to handle the tools of linear algebra – that is, vectors and matrices – as effortlessly as
possible. In this section we introduce these concepts.
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Vectors

A vector is an ordered list of numbers. You can enter a vector of any length in MAT-
LAB by typing a list of numbers, separated by commas and/or spaces, inside square
brackets. For example:

>> Z = [2,4,6,8]

Z =
2 4 6 8

>> Y = [4 -3 5 -2 8 1]

Y =
4 -3 5 -2 8 1

Suppose that you want to create a vector of values running from 1 to 9. Here’s
how to do it without typing each number:

>> X = 1:9

X =
1 2 3 4 5 6 7 8 9

The notation 1:9 is used to represent a vector of numbers running from 1 to 9 in
increments of 1. The increment can be specified as the middle of three arguments:

>> X = 0:2:10

X =
0 2 4 6 8 10

Increments can be fractional or negative, for example, 0:0.1:1 or 100:-1:0.
The elements of the vector X can be extracted as X(1), X(2), etc. For example:

>> X(3)

ans =
4

To change the vector X from a row vector to a column vector, put a prime (’) after X:

>> X’

ans =
0
2
4
6
8
10

You can perform mathematical operations on vectors. For example, to square the
elements of the vector X, type

>> X.ˆ2

ans =
0 4 16 36 64 100
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The period in this expression is very important; it says that the numbers in X should
be squared individually, or element-by-element. Typing Xˆ2 would tell MATLAB to
use matrix multiplication to multiply X by itself and would produce an error message
in this case. (We discuss matrices below and in Chapter 4.) Similarly, you must type
.* or ./ if you want to multiply or divide vectors element-by-element. For example,
to multiply the elements of the vector X by the corresponding elements of the vector
Y, type

>> X.*Y

ans =
0 -6 20 -12 64 10

Most MATLAB operations are, by default, performed element-by-element. For
example, you do not type a period before the addition and subtraction operators, and
you can type exp(X) to get the exponential of each number in X (the matrix expo-
nential function is expm). One of the strengths of MATLAB is its ability to efficiently
perform operations on vectors.

Matrices

A matrix is a rectangular array of numbers. Row and column vectors, which we
discussed above, are examples of matrices. Consider the 3 × 4 matrix

A =

⎛
⎝1 2 3 4

5 6 7 8
9 10 11 12

⎞
⎠ .

It can be entered in MATLAB with the command

>> A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]

A =
1 2 3 4
5 6 7 8
9 10 11 12

Note that the matrix elements in any row are separated by commas, and the rows are
separated by semicolons. The elements in a row can also be separated by spaces.

If two matrices A and B are the same size, their (element-by-element) sum is
obtained by typing A + B. You can also add a scalar (a single number) to a matrix;
A + c adds c to each element in A. Likewise, A - B represents the difference of
A and B, and A - c subtracts the number c from each element of A. If A and B are
multiplicatively compatible, i.e., if A is n×m and B is m× �, then their product A*B
is n × �. Recall that the element of A*B in the ith row and jth column is the sum of
the products of the elements from the ith row of A times the elements from the jth
column of B, i.e.,

(A*B)ij =
m∑

k=1

AikBkj , 1 ≤ i ≤ n, 1 ≤ j ≤ �.
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The product of a number c and the matrix A is given by c*A, and A’ represents the
conjugate transpose of A. (For more information, see the online help for ctranspose
and transpose.)

A simple illustration is given by the matrix product of the 3 × 4 matrix A above
by the 4 × 1 column vector Z’:

>> A*Z’

ans =
60
140
220

The result is a 3 × 1 matrix, in other words, a column vector.

☞ MATLAB has many commands for manipulating matrices. You can read
about them in the section More about Matrices in Chapter 4 and in the online
help; some of them are illustrated in the section Linear Economic Models in
Chapter 10.

Suppressing Output

Typing a semicolon at the end of an input line suppresses printing of the output of the
MATLAB command. The semicolon should generally be used when defining large
vectors or matrices (such as X = -1:0.1:2;). It can also be used in any other
situation where the MATLAB output need not be displayed.

Functions

In MATLAB you will use both built-in functions and functions that you create your-
self.

Built-in Functions

MATLAB has many built-in functions. These include sqrt, cos, sin, tan, log,
exp, and atan (for arctan) as well as more specialized mathematical functions like
gamma, erf, and besselj. MATLAB also has several built-in constants, includ-
ing pi (the number π), i (the complex number i =

√−1), and Inf (∞). Some
examples:

>> log(exp(3))

ans =
3

The function log is the natural logarithm, called “ln” in many texts.

>> sin(2*pi/3)

ans =
0.8660
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To get an exact answer, you need to use a symbolic argument.

>> sin(sym(’2*pi/3’))

ans =
1/2*3ˆ(1/2)

User-Defined Functions

In this section we will examine two methods to define your own functions in MAT-
LAB. The first uses the command inline, and the second uses the operator @ to
create what is called an “anonymous function.” The latter method is new in MAT-
LAB 7, and is now the preferred method. We shall mention inline periodically for
the sake of users of earlier versions, but we strongly recommend that users of MAT-
LAB 7, and users of older versions when they upgrade, adopt @ as the usual method
for defining their functions. Functions can also be defined in separate files called
M-files – see Chapter 3.

Here’s how to define the function f(x) = x2 using these commands.

>> f = @(x) xˆ2

f =
@(x) xˆ2

Alternatively,

>> f1 = inline(’xˆ2’, ’x’)

f1 =
Inline function:
f1(x) = xˆ2

Once the function is defined – by either method – you can evaluate it:

>> f(4)

ans =
16

>> f1(4)

ans =
16

As we observed earlier, most MATLAB functions can operate on vectors as well
as scalars. To insure that your user-defined function can act on vectors, insert dots
before the mathematical operators *, /, and ˆ. Thus to obtain a vectorized version of
f(x) = x2, type either

>> f = @(x) x.ˆ2

or else

>> f1 = inline(’x.ˆ2’, ’x’)

Now we can evaluate either function on a vector, for example

>> f(1:5)
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ans =
1 4 9 16 25

You can plot f and f1, using MATLAB graphics, in several ways that we will
explore in the section Graphics later in this chapter. We conclude this section by
remarking that one can also define functions of two or more variables. For example,
either of the following

>> g = @(x, y) xˆ2 + yˆ2; g(1, 2)
>> g1 = inline(’xˆ2 + yˆ2’, ’x’, ’y’); g1(1, 2)

results in the answer 5. If instead you define

>> g = @(x, y) x.ˆ2 + y.ˆ2;

then you can evaluate on vectors; thus

>> g([1 2], [3 4])

ans =
10 20

gives the values of the function at the points (1, 3) and (2, 4).

Managing Variables

We have now encountered four different types of MATLAB data: floating-point num-
bers, strings, symbolic expressions, and functions. In a long MATLAB session it may
be hard to remember the names and types of all the variables you have defined. You
can type whos to see a summary of the names and types, or classes, of your currently
defined variables. But before you do that, first assign a = pi, b = ’pi’, and c =
sym(’pi’); now type whos. Here’s the output for the MATLAB session displayed
in this chapter.

>> whos

Name Size Bytes Class

A 3x4 96 double array
X 1x31 248 double array
Y 1x6 48 double array
Z 1x4 32 double array
a 1x1 8 double array
ans 1x2 16 double array
b 1x2 4 char array
c 1x1 128 sym object
d 1x1 8 double array
f 1x1 16 function_handle array
f1 1x1 824 inline object
g 1x1 16 function_handle array
g1 1x1 882 inline object
u 1x1 126 sym object
v 1x1 126 sym object
w 1x1 138 sym object
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x 1x1 126 sym object
y 1x1 126 sym object

Grand total is 183 elements using 2968 bytes

The variables A, X, Y, Z, a, and d were assigned numerical data and are reported
as “double array”. That means that they are arrays of double-precision numbers; in
this case the arrays a and d are of size 1× 1, i.e., scalars. The “Bytes” column shows
how much computer memory is allocated to each variable. Also, ans is numerical
since the last unassigned output was a 1×2 vector. The variable b is a string, reported
as “char array”, while the variables c, u, v, w, x and y are symbolic. Finally we see
two function handles and two inline objects, corresponding to the pairs of anonymous
functions and inline functions.

The command whos shows information about all defined variables, but it does
not show the values of the variables. To see the value of a variable, simply type the
name of the variable and press ENTER or RETURN.

MATLAB commands expect particular classes of data as input, and it is impor-
tant to know what class of data is expected by a given command; the help text for a
command usually indicates the class or classes of input it expects. The wrong class
of input usually produces an error message or unexpected output. For example, type
sin(’pi’) to see how unexpected output can result from supplying a string to a
function that isn’t designed to accept strings.

To clear all defined variables, type clear or clear all. You can also type,
for example, clear x y to clear only x and y.

You should generally clear variables before starting a new calculation. Otherwise
values from a previous calculation can creep into the new calculation by accident.
Finally, we observe that the Workspace Browser presents a graphical alternative to
whos. You can activate it by clicking on its tab under the Current Directory Browser,
or by typing workspace at the command prompt. Figure 2.2 depicts a Desktop in
which the Command Window and the Workspace Browser contain the same informa-
tion as displayed above.

Variables and Assignments

In MATLAB, you use the equal sign to assign values to a variable. For instance,

>> x = 7

x =
7

will give the variable x the value 7 from now on. Henceforth, whenever MATLAB
sees the letter x, it will substitute the value 7. For example, if y has been defined as a
symbolic variable:

>> xˆ2 - 2*x*y + y

ans =
49-13*y
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Figure 2.2. Desktop with the Workspace Browser.

You can make very general assignments for symbolic variables and then manipu-
late them:

>> syms x y
>> z = xˆ2 - 2*x*y + y

z =
xˆ2-2*x*y+y

>> 5*y*z

ans =
5*y*(xˆ2-2*x*y+y)

A variable name or function name can be any string of letters, digits, and un-
derscores, provided that it begins with a letter (punctuation marks are not allowed).
MATLAB distinguishes between uppercase and lowercase letters. You should choose
distinctive names that are easy for you to remember, generally using lowercase let-
ters. For example, you might use cubicsol as the name of the solution of a cubic
equation.

➯ A common source of puzzling errors is the inadvertent reuse of previ-
ously defined variables.

MATLAB never forgets your definitions unless instructed to do so. You can check on
the current value of a variable by simply typing its name.
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Solving Equations

You can solve equations involving variables with solve or fzero. For example, to
find the solutions of the quadratic equation x2 − 2x − 4 = 0, type

>> solve(’xˆ2 - 2*x - 4 = 0’)

ans =
5ˆ(1/2)+1
1-5ˆ(1/2)

Note that the equation to be solved is specified as a string; i.e., it is surrounded by
single quotes. The answer consists of the exact (symbolic) solutions 1 ± √

5. To
get numerical solutions, type double (ans), or vpa(ans) to display more digits.
The input to solve can also be a symbolic expression, but then MATLAB requires
that the right-hand side of the equation be 0, and in fact the syntax for solving x2 −
3x = −7 is:

>> syms x
>> solve(xˆ2 - 3*x + 7)

ans =
3/2+1/2*i*19ˆ(1/2)
3/2-1/2*i*19ˆ(1/2)

The answer consists of the exact (symbolic) solutions (3 ±√
19i)/2 (complex num-

bers, where the letter i in the answer stands for the imaginary unit
√−1). To get

numerical solutions, type double(ans), or vpa(ans) to display more digits.
The command solve can solve higher-degree polynomial equations, as well as

many other types of equations. It can also solve equations involving more than one
variable. If there are fewer equations than variables, you should specify (as strings)
which variable(s) to solve for. For example, type solve(’2*x - log(y) =
1’, ’y’) to solve 2x − log y = 1 for y in terms of x. You can specify more
than one equation as well. For example:

>> [x, y] = solve(’xˆ2 - y = 2’, ’y - 2*x = 5’)

x =
1+2*2ˆ(1/2)
1-2*2ˆ(1/2)
y =
7+4*2ˆ(1/2)
7-4*2ˆ(1/2)

This system of equations has two solutions. MATLAB reports the solution by giving
the two x-values and the two y-values for those solutions. Thus the first solution
consists of the first value of x together with the first value of y. You can extract these
values by typing x(1) and y(1):

>> x(1)

ans =
1+2*2ˆ(1/2)

>> y(1)
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ans =
7+4*2ˆ(1/2)

The second solution can be extracted with x(2) and y(2).
Note that, in the preceding solve command, we assigned the output to the vector

[x, y]. If you use solve on a system of equations without assigning the output to
a vector, then MATLAB does not automatically display the values of the solution:

>> sol = solve(’xˆ2 - y = 2’, ’y - 2*x = 5’)

sol =
x: [2x1 sym]
y: [2x1 sym]

To see the vectors of x- and y-values of the solution, type sol.x and sol.y. To see
the individual values, type sol.x(1), sol.y(1), etc.

☞ In this example, the output of solve is a structure array. See the section Cell
and Structure Arrays in Chapter 6 for more about this data class.

Some equations cannot be solved symbolically, and in these cases solve tries to
find a numerical answer. For example:

>> solve(’sin(x) = 2 - x’)

ans =
1.1060601577062719106167372970301

Sometimes there is more than one solution, and you might not get what you ex-
pected. For example:

>> solve(’exp(-x) = sin(x)’)

ans =
-2.0127756629315111633360706990971+2.7030745115909622139316148044265*i

The answer is a complex number. Though it is a valid solution of the equation, there
are also real-number solutions. In fact, the graphs of exp(−x) and sin(x) are shown
in Figure 2.3; each intersection of the two curves represents a solution of the equation
e−x = sin(x).

You can numerically find the (approximate) solutions shown on the graph with the
fzero command, which looks for a zero of a given function near a specified value
of x. A solution of the equation e−x = sin(x) is a zero of the function e−x − sin(x),
so to find an approximate solution near x = 0.5, type

>> h = @(x) exp(-x) - sin(x);
>> fzero(h, 0.5)

ans =
0.5885

Replace 0.5 with 3 to find the next solution, and so forth.
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Figure 2.3. Two Intersecting Curves.

Graphics

In this section, we introduce MATLAB’s two basic plotting commands and show how
to use them.

Graphing with ezplot

The simplest way to graph a function of one variable is with ezplot, which expects
a string, a symbolic expression, or an anonymous function, representing the function
to be plotted. For example, to graph x2 + x + 1 on the interval −2 to 2 (using the
string form of ezplot), type

>> ezplot(’xˆ2 + x + 1’, [-2 2])

The plot will appear on the screen in a new window labeled “Figure 1”.
Using a symbolic expression, you can produce the plot in Figure 2.4 with the follow-
ing input:

>> syms x, ezplot(xˆ2 + x + 1, [-2 2])

Finally, you can use an anonymous function as the argument to ezplot, as in:

>> ezplot(@(x) x.ˆ2 + x + 1, [-2 2])

✓ Graphs can be misleading if you do not pay attention to the axes. For exam-
ple, the input ezplot(xˆ2 + x + 3, [-2 2]) produces a graph that
looks identical to the previous one, except that the vertical axis has different
tick marks (and MATLAB assigns the graph a different title).
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Figure 2.4. The Parabola y = x2 + x + 1 on the Interval [−2, 2].

Modifying Graphs

You can modify a graph in a number of ways. You can change the title above the
graph in Figure 2.4 by typing (in the Command Window, not the figure window)

>> title ’A Parabola’

The same change can be made directly in the figure window by selecting Axes Prop-
erties... from the Edit menu at the top of the figure window. (Just type the new title
in the box marked “Title.”) You can add a label on the vertical axis with ylabel
or change the label on the horizontal axis with xlabel. Also, you can change the
horizontal and vertical ranges of the graph with the axis command. For example, to
confine the vertical range to the interval from 0 to 3, type

>> axis([-1 2 0 3])

The first two numbers are the range of the horizontal axis; both ranges must be in-
cluded, even if only one is changed.

To make the shape of the graph square, type axis square; this also makes the
scale the same on both axes if the x and y ranges have equal length. For ranges of
any lengths, you can force the same scale on both axes without changing the shape
by typing axis equal. Generally, this command will expand one of the ranges as
needed. However, if you unintentionally cut off part of a graph, the missing part is not
forgotten by MATLAB. You can readjust the ranges with an axis command like the
one above, or type axis tight to automatically set the ranges to include the entire
graph. Type help axis for more possibilities. (Remember to type more on first
if you want to read a screenful at a time.)

You can make some of these changes directly in the figure window as you will see
if you explore the pull-down menus on the figure window’s tool bar. Our experience
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is that doing so via MATLAB commands in the Command Window provides more
robustness, especially if you want to save your commands in an M-file (see Chapter 3)
in order to reproduce the same graph later on. To close the figure, type close or
close all, or simply click on the × in the upper right-hand corner of the window.

☞ See Chapter 5 for more ways to manipulate graphs.

Graphing with plot

The plot command works on vectors of numerical data. The syntax is plot(X,
Y), where X and Y are vectors of the same length. For example:

>> X = [1 2 3]; Y = [4 6 5]; plot(X, Y)

1 1.5 2 2.5 3
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Figure 2.5. Plotting Line Segments.

✓ Here we separated multiple commands on one line with semicolons instead of
commas. Notice that the output of the commands preceding the semicolons
is suppressed.

The plot command considers the vectors X and Y to be lists of the x and y
coordinates of successive points on a graph, and joins the points with line segments.
So, in Figure 2.5, MATLAB connects (1, 4) to (2, 6) to (3, 5).

To plot x2 on the interval from −1 to 2 we first make a list X of x values, and then
type plot(X, X.ˆ2). (The . here is essential since X.ˆ2 represents the element-
by-element square of the vector X, not the matrix square.) We need to use enough x
values to ensure that the resulting graph drawn by “connecting the dots” looks smooth.
We’ll use an increment of 0.01. Thus a recipe for graphing the parabola is:

>> X = -1:0.01:2; plot(X, X.ˆ2)
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The result appears in Figure 2.6. Note that we used a semicolon to suppress printing
of the 301-element vector X.
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Figure 2.6. Plot of a Parabola.

☞ We describe more of MATLAB’s graphics commands in Chapter 5.

For now, we content ourselves with demonstrating how to plot a pair of expres-
sions on the same graph.

Plotting Multiple Curves

Each time you execute a plotting command, MATLAB erases the old plot and draws
a new one. If you want to overlay two or more plots, type hold on. This command
instructs MATLAB to retain the old graphics and draw any new graphics on top of
the old. It remains in effect until you type hold off. Here’s an example using
ezplot:

>> ezplot(’exp(-x)’, [0 10])
>> hold on
>> ezplot(’sin(x)’, [0 10])
>> hold off
>> title ’exp(-x) and sin(x)’

The result is shown in Figure 2.3 earlier in this chapter. The commands hold on
and hold off work with all graphics commands.

With plot, you can plot multiple curves directly. For example:

>> X = 0:0.01:10; plot(X, exp(-X), X, sin(X))

Note that the vector of x-coordinates must be specified once for each function being
plotted.





Chapter 3

Interacting with MATLAB

In this chapter we describe an effective procedure for working with MATLAB, and for
preparing and presenting the results of a MATLAB session. In particular we discuss
some features of the MATLAB interface and the use of M-files. We introduce a new
command in MATLAB 7, publish, which produces formatted output. We also give
some simple hints for debugging your M-files.

The MATLAB Interface

Starting with version 6, MATLAB has an interface called the MATLAB Desktop.
Embedded inside it is the Command Window that we described in Chapter 2.

The Desktop

By default, the MATLAB Desktop (Figure 1.1 in Chapter 1) contains four windows
inside it, the Command Window on the right, the Current Directory Browser and
the Workspace Browser in the upper left, and the Command History Window in the
lower left. Notice that there are tabs for alternating between the Current Directory
and Workspace Browsers. You can change which windows are currently visible with
the Desktop menu (in MATLAB 6, the View menu) at the top of the Desktop, and
you can adjust the sizes of the windows by dragging their edges with the mouse.
The Command Window is where you type the commands and instructions that cause
MATLAB to evaluate, compute, draw, and perform all the other wonderful magic that
we describe in this book. We will discuss the other windows in separate sections
below.

The MATLAB Desktop includes a menu bar and a tool bar; the tool bar contains
icons that give quick access to some of the items you can select through the menu
bar. Many menu items also have keyboard shortcuts, listed to their right when you
select the menu. Some of these shortcuts depend on your operating system, and we
generally will not mention them. Nonetheless, you may find it useful to note and use
the keyboard shortcuts for menu items you frequently use.

Each of the windows in the Desktop contains two small buttons in the upper right-
hand corner. The one labeled × allows you to close the window, while the curved
arrow will “undock” the window from the Desktop (you can return it to the Desktop
by selecting Dock from the Desktop menu of the undocked window, or by clicking
on the curved arrow on its menu bar).

27
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✓ While the Desktop provides some new features and a common interface for
the Windows and UNIX versions of MATLAB, it may also run more slowly
than the basic Command Window interface, especially on older computers.
You can run MATLAB with the old interface by starting the program with the
command matlab -nodesktop.

The Workspace

In Chapter 2, we introduced the commands clear and whos, which can be used to
keep track of the variables you have defined in your MATLAB session. The com-
plete collection of defined variables is referred to as the Workspace, which you can
view using the Workspace Browser. You can make this browser appear by typing
workspace or, in the default layout of the MATLAB Desktop, by clicking on the
“Workspace” tab below the Current Directory Browser. The Workspace Browser con-
tains a list of the current variables and their sizes (but not their values). If you double-
click on a variable, its contents will appear in a new window called the Array Editor,
which you can use to edit individual entries in a vector or matrix. (The command
openvar also will open the Array Editor.) You can remove a variable from the
Workspace by selecting it in the Workspace Browser and choosing Edit:Delete.

If you need to interrupt a session and don’t want to be forced to recompute ev-
erything later, then you can save the current Workspace with save. For example,
typing save myfile saves the values of all currently defined variables in a file
called myfile.mat. To save only the values of the variables X and Y, type

>> save myfile X Y

When you start a new session and want to recover the values of those variables, use
load. For example, typing load myfile restores the values of all the variables
stored in the file myfile.mat.

✓ By default, variables are stored in a binary format that is specific to MAT-
LAB, but you can also save or load data as ASCII text. For details, see the
online help for these commands. This feature is useful for exchanging data
with other programs.

The Current Directory and Search Path

New files that you create from within MATLAB will be stored in your current direc-
tory. The name of this directory is displayed in the MATLAB Desktop tool bar, and
the files and subdirectories it contains are listed in the Current Directory Browser.
You can also display the name of the current directory by typing pwd (“print working
directory”) in the Command Window, and can get a list of the directory’s contents by
typing dir or ls.
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✓ The term folder is now more common than directory; for a computer file
system, they mean the same thing. We will use “directory” because MATLAB
uses this term in its documentation. However, its interface sometimes uses
“folder”, for example in the “File Type” column in the Current Directory
Browser.

You may want to change the current directory from its default location, or you
may want to maintain different directories for different projects. You can change
the current directory in MATLAB by using the command cd, the Current Directory
Browser, or the “Current Directory” box on the Desktop tool bar. You can type the
directory name into this box and type ENTER, select a directory you have used before
by clicking on the arrow at the right of the box, or browse for a directory by clicking
on the “Browse for folder” icon to the right of the box.

For example, on a Windows computer, the default current directory is a subdi-
rectory called work of the directory in which MATLAB is installed; for example,
C:\MATLAB7\work. You can create a new directory, say ProjectA, within it
by typing mkdir ProjectA. You can also right-click in the Current Directory
Browser and select New:Folder, or click on the “New folder” icon in the browser’s
tool bar. Then type cd ProjectA or double-click on it in the Current Directory
Browser to make it your current directory. You will then be able to read and write
files in this directory in your current MATLAB session.

If you need only to be able to read files from a certain directory, an alternative to
making it your current directory is to add it to the path of directories that MATLAB
searches to find files. The current directory and the directories in your path are the
only places MATLAB searches for files, unless you explicitly type the directory name
as part of the file name. To see the current path, type path. To add the directory
C:\MATLAB7\work\ProjectA to your path, type

>> addpath C:\MATLAB7\work\ProjectA

When you add a directory to the path, the files it contains remain available for the
rest of your session regardless of whether you subsequently add another directory to
the path or change the current directory. The potential disadvantage of this approach
is that you must be careful when naming files. When MATLAB searches for files, it
uses the first file with the correct name that it finds in the path list, starting with the
current directory. If you use the same name for different files in different directories
in your path, you can run into problems.

You can also control the MATLAB search path from the Set Path tool. To open
this tool, type editpath or pathtool, or select File:Set Path.... The “Set Path”
tool consists of a panel, with a list of directories in the current path, and several buttons
that allow you to add, remove, and re-order the directories in your path.

✓ If you have many toolboxes installed, path searches can be slow, especially
with lookfor. Removing the toolboxes you are not currently using from
the MATLAB path is one way to speed up execution.
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☞ Changes you make to the current directory and path are not saved from one
MATLAB session to the next. At the end of the Script M-files section below,
we describe how to change these and other items automatically each time you
start MATLAB.

The Command History Window

The Command History Window contains a running history of the commands that
you type into the Command Window. It is useful in two ways. First, it lets you
see at a quick glance a record of the commands that you have entered previously.
Second, it can save you some typing time. If you double-click on an entry in the
Command History Window, then it will be executed immediately in the Command
Window. However, often you will want to edit a previous command before executing
it. If you right-click (that is, click with the right mouse button) on an entry in the
Command History Window, it becomes highlighted and a menu of options appears.
You can select Copy, then right-click in the Command Window and select Paste,
whereupon the command you selected will appear at the command prompt and be
ready for editing. As we described in Recovering from Problems in the previous
chapter, you can also type the UP- and DOWN-ARROW keys in the Command Window
to scroll through the commands that you have used recently. Then when you locate
the correct command line, you can use the LEFT- and RIGHT-ARROW keys to move
around in the command line, deleting and inserting changes as necessary, and then
press ENTER to tell MATLAB to evaluate the modified command.

For example, you might want to calculate to 15 digits the values of sin(0.1)/0.1,
sin(0.01)/0.01, and sin(0.001)/0.001. Here is a first try at a solution, together with
the response that MATLAB displays in the Command Window:

>> x = [0.1, 0.01, 0.001];
>> y = sin(x)/x

y =
0.9984

This is not the intended result; only one number is displayed instead of three. Re-
member that to divide two vectors element-by-element, you must type ./ rather than
/. (Typing only / “solves” the equation y*x = sin(x) for y in the “least-square”
sense; type help slash for more information.) Another problem is that only 5 dig-
its are displayed, not 15. To correct these problems, first type format long. Then
type UP-ARROW twice to redisplay the command defining y, and type RIGHT-ARROW

twice to move the cursor between the ) and /. Finally, type . and ENTER:

>> y = sin(x)./x

y =
0.99833416646828 0.99998333341667 0.99999983333334
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M-Files

M-files allow you to save multiple MATLAB commands in a file and then run them
with a single command or mouse click. While you may have solved the simple prob-
lem above correctly on the first try, more complicated problems generally require
some trial and error – running, editing, and re-running a series of commands several
times. While the Command History Window can be useful during the first stages of
this process, eventually you will find it more efficient to use M-files. M-files also al-
low you to share your solution to a problem with other MATLAB users, and to format
your results for others to read. There are two different kinds of M-files: script M-files
and function M-files. We shall illustrate the use of both types of M-files as we present
different solutions to the problem described above.

M-files are ordinary text files containing MATLAB commands. You can create
and modify them using any text editor or word processor that is capable of saving
files as plain ASCII text. (Such text editors include Notepad and WordPad in Win-
dows, and emacs and vi in UNIX.) More conveniently, you can use the built-in Edi-
tor/Debugger, which you can start by typing edit, either by itself (to edit a new file)
or followed by the name of an existing M-file in the current directory. You can also use
the File menu or the two leftmost icons on the tool bar to start the Editor/Debugger,
either to create a new M-file or to open an existing M-file. Double-clicking on an
M-file in the Current Directory Browser will also open it in the Editor/Debugger.

Script M-Files

A script M-file contains a sequence of MATLAB commands to be run in order. We
now show how to construct a script M-file to solve the mathematical problem de-
scribed earlier. Create a file containing the following lines:

format long
x = [0.1, 0.01, 0.001];
y = sin(x)./x

We will assume that you have saved this file with the name task1.m in your current
directory, or in some directory in your path. You can name the file any way you
like (subject to the usual naming restrictions on your operating system), but the “.m”
suffix is mandatory.

You can tell MATLAB to run (or execute) this script by typing task1 in the
Command Window. (You must not type the “.m” extension here; MATLAB automat-
ically adds it when searching for M-files.) The output – but not the commands that
produce them – will be displayed in the Command Window. Now the sequence of
commands can easily be changed by modifying the M-file task1.m. For example,
if you also wish to calculate sin(0.0001)/0.0001, you can modify the M-file to read

format long
x = [0.1, 0.01, 0.001, 0.0001];
y = sin(x)./x

and then run the modified script by again typing task1. Be sure to save your changes
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to task1.m first; otherwise, MATLAB will not recognize them.

✓ Any variables that are set by running a script M-file will persist exactly as if
you had typed them into the Command Window directly. For example, the
program above will cause all future numerical output to be displayed with 15
digits. In order to revert to 5-digit format, you would have to type format
short.

Adding Comments It is worthwhile to include comments in M-files. These com-
ments might explain what is being done in the calculation, or might interpret the
results of the calculation. In MATLAB, the percent sign (%) begins a comment; the
rest of the line is not executed by MATLAB. (The Editor/Debugger colors comments
green to help distinguish them from commands, which appear in black.) Here is our
new version of task1.m with a few comments added:

format long % turn on 15 digit display
x = [0.1, 0.01, 0.001];
y = sin(x)./x
% These values illustrate the fact that the limit of
% sin(x)/x as x approaches 0 is 1.

Notice that a multi-line comment requires a percent sign at the beginning of each line.

Cell Mode A new feature in MATLAB 7 allows one to divide a script M-file into
subunits called cells. This is especially useful if your M-file is long or if you are
going to publish it, as explained below in Publishing an M-file. To start a new cell,
insert a comment line (which will serve as the “title” of the cell that follows) starting
with a double percent sign %% followed by a space. If you open the M-file in the
Editor/Debugger and click on Enable Cell Mode in the Cell menu, then a second tool
bar will appear below the first one. Then when you click somewhere in the M-file, the
cell that contains that location will be highlighted in pale yellow. You can evaluate
that cell by then selecting Cell:Evaluate Current Cell or pressing the “Evaluate cell”
icon . This can be a big help if you’ve made a change in just one cell and do not
want to run the whole script all over again. There are also a menu item and icon to
“Evaluate cell and advance”. Once you have enabled cell mode, you can also create
more cells by selecting Cell:Insert Cell Divider or by clicking on the corresponding
icon .

Initializing Script M-files In order for the results of a script M-file to be repro-
ducible, the script should be self-contained, unaffected by other variables that you
might have defined elsewhere in the MATLAB session, and uncorrupted by leftover
graphics. For example, if you define a variable named sin in the Command Window
and then run the script task1.m above, you will get an error message because sin
now represents a variable rather than the usual built-in function. With this in mind,
you can type the line clear all at the beginning of the script to ensure that previ-
ous definitions of variables do not affect the results. You can also type close all
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at the beginning of a script M-file that creates graphics, to close all figure windows
and start with a clean slate.

As mentioned above, the commands in a script M-file will not automatically be
displayed in the Command Window. If you want the commands to be displayed along
with the results, add the command echo on to the beginning of script (it is then a
good idea to add echo off to the end of the script). Any comments in the M-file
will then be echoed too. When running a long script M-file, echoing is useful to keep
track of which outputs go with which inputs.

Here is a more carefully commented version of task1.m that will display input
as well as output:

clear all % remove old variable definitions
echo on % display the input in the command window
format long % turn on 15 digit display

x = [0.1, 0.01, 0.001]; % define the x values
y = sin(x)./x % compute the desired quotients

% These values illustrate the fact that the limit of
% sin(x)/x as x approaches 0 is equal to 1.

echo off

Startup M-File When MATLAB starts, it searches the default path (which includes
the default current directory) for a script M-file called startup.m. If you create
such a file, the commands it contains will be run each time MATLAB starts. You can
use this file to save customizations that do not normally persist from one session to the
next, such as changes to the current directory or path. (In addition to the commands
cd and addpath described above, you can remove directories from the path with
rmpath.)

Function M-Files

Function M-files, unlike script M-files, allow you to specify input values when you
run them from the MATLAB command line or from another M-file. As we described
in the previous chapter, you can also use the anonymous-function (@) syntax – not
available in MATLAB 6 or earlier versions – or inline to define your own func-
tions on the command line. However, these methods allow only a one-line function
definition, so M-files are necessary to define more complicated functions. Like a
script M-file, a function M-file is a plain text file that should reside in your current
directory or elsewhere in your MATLAB path.

Let us return to the problem described above, where we computed some values of
sin(x)/x with x = 10−b for several values of b. Suppose, in addition, that you want
to find the smallest value of b for which sin(10−b)/(10−b) and 1 agree to 15 digits.
Here is a function M-file called sinelimit.m designed to explore this question:
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function y = sinelimit(c)
% SINELIMIT computes sin(x)/x for x = 10ˆ(-b),
% where b = 1, ..., c.
format long
b = 1:c;
x = 10.ˆ(-b);
y = (sin(x)./x)’;

The first line of the file starts with function, which identifies the file as a func-
tion M-file. (The Editor/Debugger colors this special word blue.) The first line of the
M-file specifies the name of the function and describes both its input arguments (or pa-
rameters) and its output values. In this example, the function is called sinelimit.
The file name (without the .m extension) and the function name should match. When
you create this new function M-file in an untitled editor window and select Save, the
Editor/Debugger knows to call the file sinelimit.m. The function in our example
takes one input, which is called c inside the M-file. It also returns one output, which
is the value of y that results when the function finishes executing.

It is good practice to follow the first line of a function M-file with one or more
comment lines explaining what the M-file does. If you do, help will automatically
retrieve this information. For example:

>> help sinelimit

SINELIMIT computes sin(x)/x for x = 10ˆ(-b),
where b = 1, ..., c.

The remaining lines of the M-file define the function. In this example, b is defined
to be a row vector consisting of the integers from 1 to c, then x is computed from b,
and finally y is determined from x.

☞ The variables used in a function M-file, like b, x, and y in sinelimit.m,
are local variables. This means that, unlike the variables that are defined
in a script M-file, these variables are completely unrelated to any variables
with the same names that you may have used in the Command Window, and
MATLAB does not remember their values after the function M-file has been
executed. For further information, see Variables in Function M-Files in Chap-
ter 4.

Notice that the output of the lines defining b, x, and y is suppressed with a semi-
colon. Since these variables are only used internally by the M-file, it would be mis-
leading to see output about them in the Command Window. While displaying the out-
put of intermediate calculations can be useful for debugging, in general you should
suppress all output in a function M-file.

Here is an example that shows how to use the function sinelimit:

>> sinelimit(5)

ans =
0.99833416646828
0.99998333341667
0.99999983333334
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0.99999999833333
0.99999999998333

None of the values of b from 1 to 5 yields the desired answer, 1, to 15 digits. Judging
from the output, you can expect to find the answer to the question we posed above by
typing sinelimit(10). Try it!

Loops

A loop specifies that a command or group of commands should be repeated several
times. The easiest way to create a loop is to use a for statement. Here is a simple
example that computes and displays 10! = 10 · 9 · 8 · · · 2 · 1.

f = 1;
for n = 2:10

f = f*n;
end
f

The loop begins with the for statement and ends with the end statement. The com-
mand between those statements is executed a total of nine times, once for each value
of n from 2 to 10. We used a semicolon to suppress intermediate output within the
loop. In order to see the final output, we then needed to type f after the end of the
loop. Without the semicolon, MATLAB would display each of the intermediate val-
ues 2!, 3!, . . ..

The Editor/Debugger automatically colors the commands for and end blue. It
is not necessary, but improves readability, if you indent the commands in between (as
we did above); the Editor/Debugger does this automatically. If you type for in the
Command Window, MATLAB does not give you a new prompt (>>) until you enter
an end command, at which time MATLAB will evaluate the entire loop and display
a new prompt.

✓ If you use a loop in a script M-file with echo on in effect, the commands will
be echoed every time through the loop. You can avoid this by inserting the
command echo off just before the end statement and inserting echo on
just afterward; then each command in the loop (except end) will be echoed
once.

Presenting Your Results

Sometimes you may want to show other people the results of a script M-file that you
have created. For a polished presentation, you can import your results into another
program, such as a word processor, use publish to convert your results to a format
such as HTML, or (on a Windows computer) use an M-book. To share your results
more informally, you can give someone else your M-file, assuming that person has a
copy of MATLAB on which to run it, or you can provide the output you obtained in
the form of a diary file. We now discuss these different approaches.
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✓ You can greatly enhance the readability of your M-file by including frequent
comments. Your comments should explain what is being calculated, so the
reader can understand your procedures and strategies. Once you’ve done the
calculations, you can also add comments that interpret the results.

Publishing an M-File

MATLAB 7 comes with a very convenient command called publish to convert a
script M-file to a readable document. You should use this feature in combination with
cells; see Cell Mode above. The default output format, which we have found works
best, is HTML (i.e., a web page), but you can also publish to a Word document or
PowerPoint presentation (on a Windows computer) or to a LATEX document. Once
you have enabled cell mode in the Editor/Debugger, you can also use the “Publish to
HTML” icon on the Cell tool bar (which appears under the regular Editor tool bar).

Publishing an M-file reproduces the M-file along with its text and graphics out-
put. Each cell of the M-file appears as a separate section, under the heading taken
from the appropriate line starting with a double percent sign %% followed by a space.
Any comment lines that immediately follow this line appear as formatted text in the
output, provided that they start with a percent sign and a space, and that there are no
intervening blank lines. (You can select several formats, such as bulleted lists, using
the Insert Text Markup submenu of the Cell menu in the Editor/Debugger.) Next, all
of the MATLAB input lines and any remaining comments in the cell are reproduced
without any formatting, followed by any text output (in gray), followed by graphics.
(It is not necessary to use echo when publishing an M-file; the input and comments
always appear in the published document.)

✓ A line that starts with a double percent sign but has no following text starts a
new cell but does not produce a section heading in the published output. Start-
ing a new cell in this way allows you to insert formatted text that discusses
the output from the previous cell, without starting a new section. Perhaps
more importantly, it allows you to keep input and output close to each other
in a section with many input lines. If you don’t break up such a section into
smaller cells, all of its input will appear before all of its output, making it
hard to match output to input.

Here is another version of the script M-file task1.m discussed above that is
suitable for publishing.

%% Sample Script M-file
% This script computes sin(x)/x for x = 0.1, 0.01, 0.001.

clear all % remove old variable definitions
format long % turn on 15 digit display

x = [0.1, 0.01, 0.001]; % define the x values
y = sin(x)./x % compute the desired quotients
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%%
% These values illustrate the fact that the limit of
% sin(x)/x as x approaches 0 is equal to 1.

If your M-file puts two successive figures in the same figure window, then only
the last figure will be written to the published document, unless the figures appear in
different cells. So you should either start a new cell each time you create a new figure,
or else use figure to open separate windows for each figure produced by a given
cell.

☞ See Chapter 7 for a more thorough discussion of publishing. See Chapter 5
for more about figure windows.

Diary Files

While publish is available only starting with MATLAB 7, all versions of MATLAB
have the more primitive command diary, which saves all of the text output (and,
with echo on, the input) from a session to a file. Here is a way to use diary to
automatically save the text input and output from a script M-file to a file each time you
run it. At the beginning of the M-file, say task1.m, you can include the commands

delete task1.txt
diary task1.txt
echo on

The script M-file should then end with the commands

echo off
diary off

The first diary command causes all subsequent input to and output from the Com-
mand Window to be copied into the specified file – in this case, task1.txt. The
diary file task1.txt is a plain text file that is suitable for printing or importing into
another program.

By using delete at the beginning of the M-file, you ensure that the file only
contains the output from the most recent run of the script. If you omit the delete
command, then diary will add any new output to the end of an existing file, and
the file task1.txt can end up containing the results of several runs of the M-
file. (Putting the delete command in the script will lead to a harmless warning
message about a nonexistent file the first time you run the script.) You can also get
extraneous output in a diary file if you type CTRL+C to halt a script containing a
diary command. If you do so, you should then type diary off in the Command
Window before proceeding.

Interactive M-Files

If you want someone else to run your script M-file and see the results, it is helpful
to use the command pause to stop execution at various points: after each graph
is produced, after important comments, and after critical places where your script
generates numerical output. Each time MATLAB reaches a pause command, it
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waits until the user presses a key before proceeding. Of course, if the recipient of your
M-file is not familiar with pause, then you should include appropriate guidance at
such points; for example, with echo on in effect you could type

pause % Press any key to continue...

If you are not using echo on, then you can use the command disp to display
an appropriate message before pausing. Another command that may be useful is
input, which both displays a message and waits for the user to enter a number or
other MATLAB expression; see the online help.

✓ These interactive commands can be an annoyance if, for example, you want
to publish the M-file. If your recipient is familiar with cell mode in the Ed-
itor/Debugger, then an alternative to using pause is to separate the M-file
into cells, and let your recipient run the file one cell at a time.

☞ MATLAB also has commands and tools for developing a graphical user inter-
face (GUI); see Chapter 9. This approach allows your recipient to interact
with your M-file in a separate window that you design, rather than in the
Command Window.

Wrapping Long Input and Output Lines

Sometimes you may need to type, either in the Command Window or in an M-file,
a command that is too long to fit on one line. If so, when you get near the end of
a line you can type ... (that is, three successive periods) followed by ENTER, and
continue the command on the next line. If you do this in the Command Window, you
will not see a command prompt on the new line.

Symbolic Numerical output is formatted by MATLAB to fit your screen, but symbolic
expressions generally appear on one line no matter how long they are. If s is a sym-
bolic expression, then typing pretty(s) displays s in pretty print format, which
uses multiple lines on your screen to imitate written mathematics. The result is of-
ten easier to read than the default format. An important feature of pretty is that it
wraps long expressions to fit within the margins (80 characters wide) of a standard-
sized window. If your symbolic output is long enough to extend past the right-hand
edge of your window, it may be truncated when you print your output, so you should
use pretty to make the entire expression visible in your printed output.

Printing and Saving Graphics

As indicated in Chapters 1 and 2, graphics appear in a separate window. You can save
the current graph by selecting File:Save As... in the figure window. The default file
format (.fig) is specific to MATLAB and is not understood by most other programs;
however, several other formats are available. You can also print the current figure by
selecting File:Print.... Alternatively, typing print causes the figure in the current
figure window to be printed on your default printer. Since you probably don’t want
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to print the figure every time you run a script, you should not include a bare print
command in an M-file. Instead, you should use a form of print that sends the output
to a file. It is also helpful to give informative titles to your figures. For example:

close all % remove old figure windows

% Graph sin(x) from 0 to 2*pi:
x = 2*pi*(0:0.01:1);
plot(x, sin(x))

title(’Figure A: Sine Curve’) % title the figure
print -deps figureA % store the graph in figureA.eps

The form of print used in this script causes the current figure to be written in Encap-
sulated PostScript® format to a file in the current directory, called figureA.eps.
This file can be printed later (on a PostScript printer), or it can be imported into
another program that can read PostScript format. If you intend to paste MATLAB
graphics into a web page, it is better to save the figure as a png file with print
-dpng. (You can also select Save As... from the File menu of the figure window
and under “Save as type:” select “Portable Network Graphics file (*.png)”.) See the
online help for print for other formats available.

As a final example involving graphics, let’s consider the problem of graphing the
functions sin(x), sin(2x), and sin(3x) on the same set of axes. This is a typical
example; we often want to plot several similar curves whose equations depend on a
parameter. Here is a script M-file solution to the problem:

x = 2*pi*(0:0.01:1); % define the x values
figure, hold on % open a new figure window with overlay

% Run a loop to plot three sine curves:
for c = 1:3

plot(x, sin(c*x))
end

hold off, axis([0, 2*pi, -1, 1]) % adjust the x axis
title(’Several Sine Curves’) % title the figure

The result is shown in Figure 3.1.
Let’s analyze this solution. We start by defining a grid of 101 evenly spaced x

values from 0 to 2π. Then figure opens a new figure window, and hold on lets
MATLAB know that we want to draw several curves on the same set of axes. Rather
than type three plot commands, we use a for loop, as described above. Then we
use hold off to release the figure window, make the graph look a little nicer by
changing the horizontal axis from the range MATLAB chooses to the actual range of
x, and title the figure.

M-Books

Another sophisticated way of presenting MATLAB output, without having to produce
an M-file first, is in a Microsoft Word document, incorporating text, MATLAB com-
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Figure 3.1. Sine Curves.

mands, and graphics. This allows you more control over formatting than publish.
A simple first approach is to prepare a Word document with explanatory comments,
and to paste in your MATLAB commands (you can do this in another font) or include
your M-files using File... from Word’s Insert menu. Finally, you can paste in the
graphics by selecting Insert:Picture:From File... in Word. You should have first
saved the graphics in a common format such as png, tiff, or eps.

A more direct approach is to enable M-books on your computer. An M-book is
a Word document with embedded executable MATLAB code (that runs as a Word
macro, via the intermediary of Visual Basic). You can launch an M-book by typ-
ing notebook in the Command Window, or by starting Word, choosing New...
from its File menu, and selecting m-book as the Document template. If the file
m-book.dot does not already exist on your computer, you need to enable M-books
first. This is done by typing

>> notebook -setup

in the MATLAB Command Window and following the instructions. You will be
prompted for the version of Word that you are using, and possibly for the location of
some associated files.

✓ In Windows XP, 2000, or NT, you will get an error message if you run
notebook -setup from an account without administrator privileges.
However, the setup procedure should still copy m-book.dot into your
Word templates directory. You then should be able to open an M-book from
Word, though running notebook in MATLAB will still fail. In order to fully
enable M-books, you must get an administrator to run notebook -setup,
and possibly to override the default template location in order to designate a
directory that you can access.
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➯ For M-books to run properly, you must enable execution of the necessary
macros in Word. The safest way to do this is to see whether you get a
security warning dialog box when you open an M-book and, if so, select
“Always trust macros from this source”. This will maintain your security
level at “high” for other macros. Alternatively, you can set your security
level to “medium” for all macros in the dialog box you get by selecting
Tools:Macros:Security... in Word.

Once you have successfully launched an M-book, it will behave just like any other
Word document, except for the Notebook menu at the top. If you type a MATLAB
command and hit CTRL+ENTER, or else highlight the command with the mouse and
select Evaluate Cell in the Notebook menu, MATLAB will evaluate the command
and send the output back to Word. For ease in reading, Word typesets “input cells”
(MATLAB input) in green Courier bold and “output cells” (MATLAB output) in blue
Courier type. You have an option (which you can adjust with the Notebook Options...
item in the Notebook menu) of having figure windows appear separately, having them
appear in the M-book, or both.

In one respect, M-books behave like M-files; you can modify them and run them
again and again. If you find you mistyped a command or want to change a command,
you can simply go back to the appropriate input cell, change it, and then re-evaluate
it. The new output will replace the old. Keep in mind, though, that the output will
reflect the order in which you evaluate the cells, not the order in which they appear
in the M-book. When preparing your final document, you should re-run the entire
M-book by selecting Notebook:Evaluate M-book and make sure that the commands
produce the output you desire when they are run in order.

Fine-Tuning Your M-Files

Script M-files allow you to refine your strategy for solving a problem without start-
ing from scratch each time. Nonetheless, debugging a lengthly M-file can be time-
consuming. Here are some general tips for diagnosing errors (and avoiding them in
the first place).

☞ We will discuss features of the Editor/Debugger and more advanced MAT-
LAB debugging commands in the section Debugging in Chapter 6 and in the
section Debugging Techniques in Chapter 11

• Use publish with frequent cell dividers, or use echo on near the beginning
of an M-file, so that you can see “cause” as well as “effect.”

• Use cell mode in the Editor/Debugger, or make liberal use of pause, so that
you can see the results of one part of an M-file at a time.

• Use the semicolon to suppress unneeded output, especially large vectors and
arrays that you define.
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• If you are producing graphics with hold on, don’t forget to type hold off
before starting a new figure, so that the next figure is not mixed with the old
one.

• Also when starting a new figure, insert a cell divider or pause command, or
use figure to open a new window, so that the next graphics command will
not obliterate the current one before you have a chance to see it.

• Do not include bare print commands in your M-files. Instead, print to a file.

• The command keyboard is like pause, but is more useful for debugging. If
you have the line keyboard in your M-file, then when MATLAB reaches it,
execution of your script is interrupted, and a new prompt appears with the letter
K before it. At this point you can type any normal MATLAB command. This is
useful if you want to examine or reset some variables in the middle of running
a script. To resume execution, type the command return.

• Finally, remember that you can stop a running M-file by typing CTRL+C. This
is useful if a calculation is taking too long, if MATLAB is spewing out unde-
sired output, or if, at a pause command, you realize that you want to stop
execution completely.



Practice Set A

Algebra and Arithmetic

Symbolic Problems 3–8 require the Symbolic Math Toolbox. The others do not.

1. Compute the following quantities.

(a) 1111 − 345.

(b) e14 and 382801π to 15 digits each. Which is bigger?

(c) the fractions 2709/1024, 10583/4000, and 2024/765. Which of these is
the best approximation to

√
7?

2. Compute to 15 digits the following quantities.

(a) cosh(0.1).

(b) ln(2). (Hint: the natural logarithm in MATLAB is called log, not ln.)

(c) arctan(1/2). (Hint: the inverse tangent function in MATLAB is called
atan, not arctan.)

3. Solve (symbolically) the system of linear equations

3x + 4y + 5z = 2
2x − 3y + 7z = −1

x − 6y + z = 3.

Check your answer using matrix multiplication.

4. Try to solve (symbolically) the system of linear equations

3x − 9y + 8z = 2
2x − 3y + 7z = −1

x − 6y + z = 3.

What happens? Can you see why? Again check your answer using matrix
multiplication. Is the answer “correct”?

5. Factor the polynomial x4 − y4.

6. Use simplify or simple to simplify the following expressions:

43
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(a) 1/
(
1 + 1/

(
1 + 1

x

))
,

(b) cos2 x − sin2 x.

7. Compute 3301, both as an approximate floating-point number and as an exact
integer (written in usual decimal notation).

8. Use either solve or fzero, as appropriate, to solve the following equations.

(a) 67x + 32 = 0 (exact solution).

(b) 67x + 32 = 0 (numerical solution to 15 places).

(c) x3 + px + q = 0. (Solve for x in terms of p and q.)

(d) ex = 8x − 4 (all real solutions). It helps to draw a picture first.

9. Use plot and/or ezplot, as appropriate, to graph the following functions.

(a) y = x3 − x for −4 ≤ x ≤ 4.

(b) y = sin(1/x2) for −2 ≤ x ≤ 2. Try this with both plot and ezplot.
Are both results “correct”? If you use plot, be sure to plot enough
points.

(c) y = tan(x/2) for −π ≤ x ≤ π,−10 ≤ y ≤ 10. (Hint: first draw the
plot; then use axis.)

(d) y = e−x2/2 and y = x4 − x2 for −1.5 ≤ x ≤ 1.5 (on the same set of
axes).

10. Plot the functions x4 and 2x on the same graph and determine how many times
their graphs intersect. (Hint: you will probably have to make several plots,
using intervals of various sizes, in order to find all the intersection points.)
Now find the approximate values of the points of intersection using fzero.



Chapter 4

Beyond the Basics

In this chapter, we describe some of the finer points of MATLAB and review in more
detail some of the concepts introduced in Chapter 2. We explore enough of MAT-
LAB’s internal structure to improve your ability to work with complicated functions,
expressions, and commands. At the end of this chapter, we introduce some of the
MATLAB commands for doing calculus.

Suppressing Output

Some MATLAB commands produce output that is superfluous. For example, when
you assign a value to a variable, MATLAB echoes the value. But, as we mentioned
briefly in Chapter 2, you can suppress the output of a command by putting a semicolon
after the command. Here is an example.

>> syms x
>> y = x + 7

y=
x+7

>> z = x + 7;
>> z

z=
x+7

The semicolon does not affect the way MATLAB processes the command internally,
as you can see from its response to the command z.

You can also use semicolons to separate a series of commands when you are
interested only in the output of the final command (several examples appear later
in the chapter). As we noted in Chapter 2, commas can also be used to separate
commands – without suppressing output. If you use a semicolon after a graphics
command, it will not suppress the graphic.

➯ The most common use of the semicolon is to suppress the printing of a
long vector or big matrix.

Another object that you may want to suppress is MATLAB’s label for the output
of a command. The command disp is designed to achieve that; typing disp(x)
will print the value of the variable x without printing the label and the equal sign. So

>> x = 7; disp(x)

45
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7

or

>> disp(solve(’x + tan(y) = 5’, ’y’))

-atan(x-5)

Data Classes

Every variable you define in MATLAB, as well as every input to, and output from,
a command, is an array of data belonging to a particular class. In this book we use
primarily the following types of data: floating-point numbers, symbolic expressions,
character strings, function handles, and inline functions. We introduced each of these
types in Chapter 2. In Table 4.1, we list for each type of data its class (as given by
whos) and how you can create it.

Table 4.1. MATLAB Data Classes.

Type of data Class Created by
Floating-point double Typing a number
Symbolic sym Using sym or syms
Character string char Typing a string inside single quotes
Function handle function_handle Using @
Inline function inline Using inline

You can think of an array as a two-dimensional grid of data. A single number (or
symbolic expression) is regarded by MATLAB as a 1 × 1 array, sometimes called a
scalar. A 1 × n array is called a row vector, and an m × 1 array is called a column
vector. (A string is actually a row vector of characters.) An m × n array of numbers
is called a matrix; see More on Matrices below. You can see the class and array size
of every variable you have defined by looking in the Workspace Browser or typing
whos (see Managing Variables in Chapter 2). The set of variable definitions shown
by whos is called your Workspace.

In order to use MATLAB commands effectively, you must pay close attention to
the class of data each command accepts as input and returns as output. The input to a
command consists of one or more arguments separated by commas; some arguments
are optional. Some commands, like whos, do not require any input. The help text
(see Online Help in Chapter 2) for each command usually tells what classes of inputs
the command expects as well as what class of output it returns.

✓ When you type a pair of words, like hold on, MATLAB interprets the sec-
ond word as a string argument to the command given by the first word; thus,
hold on is equivalent to hold(’on’).
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Many commands allow more than one class of input, though sometimes only one
data class is mentioned in the online help. This flexibility can be a convenience in
some cases and a pitfall in others. For example, the integration command, int, ac-
cepts strings as well as symbolic input, though its help text mentions only symbolic
input. On the other hand, suppose that you have already defined a = 10, b = 5,
and now you attempt to factor the expression a2 − b2, forgetting your previous defi-
nitions and that you have to declare the variables symbolic:

>> factor(aˆ2 - bˆ2)

ans =
3 5 5

The reason you don’t get an error message is that factor is the name of a command
that factors integers into prime numbers as well as factoring expressions. Since a2 −
b2 = 75 = 3 · 52, the numerical version of factor is applied. The output is clearly
not what you intended, but, in the course of a complicated series of commands, be
careful not to be fooled by such unintended output.

✓ Note that typing help factor shows you only the help text for the nu-
merical version of the command, but gives a cross-reference to the symbolic
version at the bottom. If you want to see the help text for the symbolic version
instead, type help sym/factor. Functions such as factor with more
than one version are called overloaded.

Sometimes you need to convert one data class into another in order to prepare
the output of one command to serve as the input for another. For example, we have
used double to convert symbolic expressions to floating-point numbers and sym to
convert numbers or strings to symbolic expressions. The commands num2str and
str2num convert between numbers and strings, while char converts a symbolic ex-
pression to a string. You can also use vectorize to convert a symbolic expression
to a vectorized string; it adds a . before every *, /, and ˆ in the expression.

String Manipulation

Often it is useful to concatenate two or more strings together. The simplest way
to do this is to use MATLAB’s vector notation, keeping in mind that a string is a
“row vector” of characters. For example, typing [string1, string2] combines
string1 and string2 into one string.

Here is a useful application of string concatenation. You may need to define a
string variable containing an expression that takes more than one line to type. (In most
circumstances you can continue your MATLAB input onto the next line by typing
... followed by ENTER or RETURN, but this is not allowed in the middle of a
string.) The solution is to break the expression into smaller parts and concatenate
them, as in:

>> eqn = [’left hand side of equation = ’, ...
’right hand side of equation’]
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eqn =
left hand side of equation = right hand side of equation

✓ Notice that string output, like symbolic output, is not indented.

Symbolic and Floating-Point Numbers

We mentioned above that you can convert between symbolic numbers and floating-
point numbers with double and sym. Numbers that you type are, by default,
floating-point. However, if you mix symbolic and floating-point numbers in an arith-
metic expression, the floating-point numbers are automatically converted into sym-
bolic numbers. This explains why you can type syms x and then xˆ2 without having
to convert 2 into a symbolic number. Here is another example:

>> a = 1

a =
1

>> b = a/sym(2)

b =
1/2

MATLAB was designed so that some floating-point numbers are restored to their
exact values when converted into symbolic numbers. Integers, rational numbers with
small numerators and denominators, square roots of small integers, the number π, and
certain combinations of these numbers are so restored. For example:

>> c = sqrt(3)

c =
1.7321

>> sym(c)

ans =
sqrt(3)

Since it is difficult to predict when MATLAB will preserve exact values, it is best
to suppress the floating-point evaluation of a numerical argument to sym by enclosing
it in single quotes to make it a string, e.g., sym(’1 + sqrt(3)’). We will see
below another way in which single quotes suppress evaluation.

Functions and Expressions

We have used the terms expression and function without carefully making a distinction
between the two. Strictly speaking, if we define f(x) = x3 − 1, then f (written
without any particular input) is a function while f(x) and x3 − 1 are expressions
involving the variable x. In mathematical discourse we often blur this distinction by
calling f(x) or x3 − 1 a function, but in MATLAB the difference between functions
and expressions is important.
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In MATLAB, an expression can belong to either the string or the symbolic class
of data. Consider the following example.

>> f = ’xˆ3 - 1’;
>> f(7)

ans =
1

This result may be puzzling if you are expecting f to act like a function. Since f is a
string, f(7) denotes the seventh character in f, which is 1 (the spaces count). Recall
that, like symbolic output, string output is not indented from the left-hand margin.
This is a clue that the answer above is a string (consisting of one character), not a
floating-point number. Typing f(5) would yield - and f(-1) would produce an
error message.

You have learned three ways to define your own functions, using @ to create an
anonymous function, using inline (see Chapter 2 for these), or using an M-file (see
Chapter 3). Anonymous or inline functions are most useful for defining simple func-
tions that can be expressed in one line and for turning the output of a symbolic com-
mand into a function. Function M-files are useful for defining functions that require
several intermediate commands to compute the output. Most MATLAB commands
are actually M-files, and you can peruse them for ideas to use in your own M-files –
to see the M-file for, say, the command mean you can enter type mean. See also
More about M-files below.

Some commands, such as ode45 (a numerical ordinary differential equation
(ODE) solver, which we use later in Chapter 10), require their first argument to be
a function – to be precise, either an inline function (as in ode45(f, [0 2], 1))
or a function handle, that is, the name of a built-in function or a function M-file pre-
ceded by the special symbol @ (as in ode45(@func, [0 2], 1)). The @ syntax
was introduced in MATLAB 6; in earlier versions of MATLAB, the substitute was to
enclose the name of the function in single quotes to make it a string. But with or with-
out quotes, typing a symbolic expression as the first input to ode45 gives an error
message. On the other hand, most symbolic commands require their first argument to
be either a string or a symbolic expression, not a function.

An important difference between strings and symbolic expressions is that MAT-
LAB automatically substitutes user-defined functions and variables into symbolic ex-
pressions, but not into strings. (This is another sense in which the single quotes you
type around a string suppress evaluation.) For example, if you type

>> h = @(t) tˆ3; int(’h(t)’, ’t’)

Warning: Explicit integral could not be found.
> In sym.int at 58

In char.int at 9

ans =
int(h(t),t)

then the integral cannot be evaluated because within a string h is regarded as an un-
known function. But if you type
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>> syms t, int(h(t), t)

ans =
1/4*tˆ4

then the previous definition of h is substituted into the symbolic expression h(t)
before the integration is performed.

Substitution

In Chapter 2 we described how to create an anonymous or inline function from an
expression. You can then plug numbers into that function, to make a graph or table
of values for instance. But you can also substitute numerical values directly into an
expression with subs. See the subsection Substituting in Symbolic Expressions in
Chapter 2 for instructions.

More about M-Files

Files containing MATLAB statements are called M-files. There are two kinds of
M-files: function M-files, which accept arguments and produce output, and script M-
files, which execute a series of MATLAB statements. In Chapter 3 we created and
used both types. In this section we present additional information on M-files.

Variables in Script M-Files

When you execute a script M-file, the variables you use and define belong to your
Workspace; i.e., they take on any values you assigned earlier in your MATLAB ses-
sion, and they persist after the script has finished executing. Consider the following
one-line script M-file, called scriptex1.m:

u = [1 2 3 4];

Typing scriptex1 assigns the given vector to u but displays no output. Now con-
sider another script M-file, called scriptex2.m:

n = length(u)

If you have not previously defined u, then typing scriptex2 will produce an error
message. However, if you type scriptex2 after running scriptex1, then the
definition of u from the first script will be used in the second script and the proper
output n = 4 will be displayed.

If you don’t want the output of a script M-file to depend on any earlier computa-
tions in your MATLAB session, put the line clear all near the beginning of the
M-file, as we suggested in Structuring Script M-files in Chapter 3.

Variables in Function M-Files

The variables used in a function M-file are local, meaning that they are unaffected
by, and have no effect on, the variables in your Workspace. Consider the following



Complex Arithmetic 51

function M-file, called sq.m:

function z = sq(x)
% sq(x) returns the square of x.
z = x.ˆ2;

Typing sq(3) produces the answer 9, whether or not x or z is already defined in your
Workspace. Running the M-file neither defines them, nor changes their definitions if
they have been previously defined.

Structure of Function M-Files

The first line in a function M-file is called the function definition line; it specifies
the function name, as well as the number and order of input and output arguments.
Following the function definition line, there can be several comment lines that begin
with a percent sign %. These lines are called help text and are displayed in response
to the command help. In the M-file sq.m above, there is only one line of help text;
it is displayed when you type help sq. The remaining lines constitute the function
body; they contain the MATLAB statements that calculate the function values. In
addition, there can be comment lines (lines beginning with %) anywhere in an M-file.
All statements in a function M-file that normally produce output should end with a
semicolon to suppress the output.

Function M-files can have multiple input and output arguments. Here is an exam-
ple, called polarcoordinates.m, with two input and two output arguments.

function [r, theta] = polarcoordinates(x, y)
% polarcoordinates(x, y) returns the polar coordinates
% of the point with rectangular coordinates (x, y).
r = sqrt(xˆ2 + yˆ2);
theta = atan2(y,x);

If you type polarcoordinates(3,4), only the first output argument is returned
and stored in ans; in this case, the answer is 5. To see both outputs, you must assign
them to variables enclosed in square brackets:

>> [r, theta] = polarcoordinates(3,4)

r =
5

theta =
0.9273

By typing r = polarcoordinates(3,4) you can assign the first output argu-
ment to the variable r, but you cannot get only the second output argument; in fact,
typing theta = polarcoordinates(3,4) will still assign the first output, 5,
to theta.

Complex Arithmetic

MATLAB does most of its computations using complex numbers; i.e., numbers of
the form a + bi, where i =

√−1, and a and b are real numbers. The complex
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number i is represented as i in MATLAB. Although you may never have occasion to
enter a complex number in a MATLAB session, MATLAB often produces an answer
involving complex numbers. For example, many polynomials with real coefficients
have complex roots.

>> solve(’xˆ2 + 2*x + 2 = 0’)

ans =
-1+i
-1-i

Both roots of this quadratic equation are complex numbers, expressed in terms of
the number i. Some common functions also return complex values for certain values
of the argument.

>> log(-1)

ans =
0 + 3.1416i

You can use MATLAB to do computations involving complex numbers by entering
numbers in the form a + b*i.

>> (2 + 3*i)*(4 - i)

ans =
11.0000 + 10.0000i

Complex arithmetic is a powerful and valuable feature. Even if you don’t intend
to use complex numbers, you should be alert to the possibility of complex-valued
answers when evaluating MATLAB expressions.

More on Matrices

In addition to the usual algebraic methods of combining matrices (e.g., matrix multi-
plication), we can also combine them element-wise. Specifically, if A and B are the
same size, then A.*B is the element-by-element product of A and B, i.e., the matrix
whose i, j element is the product of the i, j elements of A and B. Likewise, A./B
is the element-by-element quotient of A and B, and A.ˆc is the matrix formed by
raising each of the elements of A to the power c. More generally, if f is one of the
built-in mathematical functions in MATLAB, or is a user-defined vectorized function,
then f(A) is the matrix obtained by applying f element-by-element to A. See what
happens when you type sqrt(A), where A is the matrix defined at the beginning of
the Matrices section of Chapter 2.

Recall that x(3) is the third element of a vector x. Likewise, A(2,3) represents
the 2, 3 element of A, i.e., the element in the second row and third column. You
can specify submatrices in a similar way. Typing A(2,[2 4]) yields the second
and fourth elements of the second row of A. To select the second, third, and fourth
elements of this row, type A(2,2:4). The submatrix consisting of the elements in
rows 2 and 3 and in columns 2, 3, and 4 is generated by A(2:3,2:4). A colon
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by itself denotes an entire row or column. For example, A(:,2) denotes the second
column of A, and A(3,:) yields the third row of A.

MATLAB has several commands that generate special matrices. The commands
zeros(n,m) and ones(n,m) produce n × m matrices of zeros and ones, respec-
tively. Also, eye(n) represents the n × n identity matrix.

Solving Linear Systems

Suppose that A is a non-singular n × n matrix and b is a column vector of length
n. Then typing x = A\b numerically computes the unique solution to A*x = b.
Type help mldivide for more information.

If either A or b is symbolic rather than numerical, then x = A\b computes the
solution to A*x = b symbolically. To calculate a symbolic solution when both in-
puts are numerical, type x = sym(A)\b.

Calculating Eigenvalues and Eigenvectors

The eigenvalues of a square matrix A are calculated with eig(A). The command
[U, R] = eig(A) calculates both the eigenvalues and eigenvectors. The eigen-
values are the diagonal elements of the diagonal matrix R, and the columns of U are
the eigenvectors. Here is an example illustrating the use of eig.

>> A = [3 -2 0; 2 -2 0; 0 1 1];
>> eig(A)

ans =
1
-1
2

>> [U, R] = eig(A)

U =
0 -0.4082 -0.8165
0 -0.8165 -0.4082

1.0000 0.4082 -0.4082

R =
1 0 0
0 -1 0
0 0 2

The eigenvector in the first column of U corresponds to the eigenvalue in the first
column of R, and so on. These are numerical values for the eigenpairs. To get sym-
bolically calculated eigenpairs, type [U, R] = eig(sym(A)).
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Doing Calculus with MATLAB

Symbolic MATLAB has in its Symbolic Math Toolbox built-in commands for most of
the computations of basic calculus.

Differentiation

You can use diff to differentiate symbolic expressions, and also to approximate the
derivative of a function given numerically (say by an M-file).

>> syms x, diff(xˆ3)

ans =
3*xˆ2

Here MATLAB has figured out that the variable is x. (See Default Variables at the
end of the chapter.) Alternatively,

>> f = @(x) xˆ3; diff(f(x))

ans =
3*xˆ2

The syntax for second derivatives is diff(f(x), 2), and for nth derivatives,
diff(f(x), n). The command diff can also compute partial derivatives of
expressions involving several variables, as in diff(xˆ2*y, y), but to do mul-
tiple partials with respect to mixed variables you must use diff repeatedly, as in
diff(diff(sin(x*y/z), x), y)). (Remember to declare y and z to be
symbolic.)

There is one instance where differentiation must be represented by the letter D,
namely when you need to specify a differential equation as input to a command. For
example, to use the symbolic ODE solver on the differential equation xy′ + 1 = y,
you enter

>> dsolve(’x*Dy + 1 = y’, ’x’)

ans =
1+x*C1

Integration

MATLAB can compute definite and indefinite integrals. Here is an indefinite integral:

>> int(’xˆ2’, ’x’)

ans =
1/3*xˆ3

As with diff, you can declare x to be symbolic and dispense with the character
string quotes. Note that MATLAB does not include a constant of integration; the
output is a single antiderivative of the integrand. Now here is a definite integral:
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>> syms x, int(asin(x), 0, 1)

ans =
1/2*pi-1

You are undoubtedly aware that not every function that appears in calculus can be
symbolically integrated, and so numerical integration is sometimes necessary. MAT-
LAB has two commands for numerical integration of a function f(x): quad and
quadl. We recommend quadl.

>> hardintegral = int(log(1 + xˆ2)*exp(-xˆ2), x, 0, 1)

Warning: Explicit integral could not be found.
> In sym.int at 58

hardintegral =
int(log(1+xˆ2)*exp(-xˆ2)),x = 0 .. 1)

>> quadl(@(x) log(1 + x.ˆ2).*exp(-x.ˆ2), 0, 1)

ans =
0.1539

➯ The commands quad and quadl will not accept Inf or -Inf as a limit
of integration (though int will). The best way to handle a numerical
improper integral over an infinite interval is to evaluate it over intervals
of increasing length until the result stabilizes.

✓ You have another option. If you type double(int(hardintegral)),
MATLAB uses the Symbolic Math Toolbox to evaluate the integral – even
over an infinite range.

MATLAB can also do multiple integrals. The following command computes the
double integral ∫ π

0

∫ sin x

0
(x2 + y2) dy dx.

>> syms x y; int(int(xˆ2 + yˆ2, y, 0, sin(x)), 0, pi)

ans =
piˆ2-32/9

Note that MATLAB presumes that the variable of integration in int is x unless you
prescribe otherwise. Note also that the order of integration is as in calculus, from the
“inside out.” Finally, we observe that there is a numerical double-integral command
dblquad, whose properties and use we will allow you to discover from the online
help.

Limits

You can use limit to compute right- and left-handed limits and limits at infinity.
For example, here is lim

x→0
sin(x)/x.
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>> syms x; limit(sin(x)/x, x, 0)

ans =
1

To compute one-sided limits, use the ’right’ and ’left’ options. For example:

>> limit(abs(x)/x, x, 0, ’left’)

ans =
-1

Limits at infinity can be computed using the symbol Inf.

>> limit((xˆ4 + xˆ2 - 3)/(3*xˆ4 - log(x)), x, Inf)

ans =
1/3

Sums and Products

Finite numerical sums and products can be computed easily using the vector capabil-
ities of MATLAB and the commands sum and prod. For example,

>> X = 1:7;
>> sum(X)

ans =
28

>> prod(X)

ans =
5040

You can do finite and infinite symbolic sums using the command symsum. To
illustrate, here is the telescoping sum

n∑
k=1

(
1
k
− 1

1 + k

)
.

>> syms k n; symsum(1/k - 1/(k + 1)), 1, n)

ans =
-1/(n+1)+1

Here is the well-known infinite sum

∞∑
n=1

1
n2

.

>> symsum(1/nˆ2, 1, Inf)

ans =
1/6*piˆ2
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Another familiar example is the sum of the infinite geometric series:

>> syms a k; symsum(aˆk, 0, Inf)

ans =
-1/(a-1)

Note, however, that the answer is valid only for −1 < a < 1.

☞ The command symsum uses the variable k as its default variable. See the
section below, Default Variables, for more information.

Taylor Series

You can use taylor to generate Taylor polynomial expansions of a specified degree
at a specified point. For example, to generate the Taylor polynomial up to degree 9 at
x = 0 of the function sin x, we enter

>> syms x; taylor(sin(x), x, 10)

ans =
x-1/6*xˆ3+1/120*xˆ5-1/5040*xˆ7+1/362880*xˆ9

Note that the command taylor(sin(x), x, 11) would give the same result,
since there is no term of degree 10 in the Taylor expansion of sin x. You can also
compute a Taylor polynomial at a point other than the origin. For example:

>> taylor(exp(x), 4, 2)

ans =
exp(2)+exp(2)*(x-2)+1/2*exp(2)*(x-2)ˆ2+1/6*exp(2)*(x-2)ˆ3

computes a Taylor polynomial of ex centered at the point x = 2.
The command taylor can also compute Taylor expansions at infinity.

>> taylor(exp(1/xˆ2), 6, Inf)

ans =
1+1/xˆ2+1/2/xˆ4

Default Variables

You can use any letters to denote variables in functions – either MATLAB’s or the
ones you define. For example, there is nothing special about the use of t in the
following, any letter will do as well:

>> syms t; diff(sin(tˆ2))

ans =
2*cos(tˆ2)*t

However, if there are multiple variables in an expression and you employ a MATLAB
command that does not make explicit reference to one of them, then either you must
make the reference explicit or MATLAB will use a built-in hierarchy to decide which
variable is the “one in play.” For example: solve(’x + y = 3’) solves for x,



58 Chapter 4. Beyond the Basics

not y. If you want to solve for y in this example, you need to enter solve(’x
+ y = 3’, ’y’). MATLAB’s default variable for solve is x. If there is no
x in the equation(s) to solve, MATLAB looks for the nearest letter to x (where y
takes precedence over w, but w takes precedence over z, etc.). Similarly for diff,
int, and many other symbolic commands. Thus syms w z; diff w*z yields z
as an answer. On occasion MATLAB assigns a different primary default variable –
for example, the default independent variable for MATLAB’s symbolic ODE solver
dsolve is t, and, as we have noted earlier, the default variable for symsum is k.
This is mentioned clearly in the online help for these commands. If you have doubt
about the default variables for any MATLAB command, you should check the online
help.

✓ Calculations with the Symbolic Math Toolbox are in fact sent by MATLAB
to another program called Maple for processing. The Maple kernel, as it is
called, performs the symbolic calculation and sends the result back to MAT-
LAB. On rare occasions, you may want to access the Maple kernel directly.
In the Professional Version of MATLAB, this can be done with the maple
and mhelp commands. On similarly infrequent occasions, the output of a
symbolic computation may involve functions that either do not exist in MAT-
LAB, or are not properly converted into MATLAB functions. This may cause
problems when you attempt to use the output in other MATLAB commands.
For help in specific situations consult MATLAB help in the Help Browser
and/or Maple help via mhelp.
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MATLAB Graphics

In this chapter we describe more of MATLAB’s graphics commands and the most
common ways of manipulating and customizing graphics. For an overview of com-
mands, type help graphics (for general graphics commands), help graph2d
(for two-dimensional graphics commands), help graph3d (for three-dimensional
graphics commands), and help specgraph (for specialized graphing commands).

We have already discussed the commands plot and ezplot in Chapter 2. We
will begin this chapter by discussing more uses of these commands, as well as some of
the other most commonly used plotting commands. Then we will discuss methods for
customizing and manipulating graphics. Finally, we will introduce some commands
and techniques for creating and modifying images and sounds.

✓ For most types of graphs we describe below, there is a command like plot
that draws the graph from numerical data, and a command like ezplot that
graphs functions specified by string or symbolic input. The latter commands
may be easier to use at first, but are more limited in their capabilities and
less amenable to customization. Thus, we emphasize the commands that plot
data, which are likely to be more useful to you in the long run.

Two-Dimensional Plots

Often one wants to draw a curve in the x-y plane, but with y not given explicitly as
a function of x. There are two main techniques for plotting such curves: parametric
plotting and contour or implicit plotting.

Parametric Plots

Sometimes x and y are both given as functions of some parameter. For example,
the circle of radius 1 centered at (0, 0) can be expressed in parametric form as x =
cos(2πt), y = sin(2πt), where t runs from 0 to 1. Though y is not expressed as a
function of x, you can easily graph this curve with plot, as follows (see Figure 5.1):

>> T = 0:0.01:1;
>> plot(cos(2*pi*T), sin(2*pi*T))
>> axis square

If we had used an increment of only 0.1 in the T vector, the result would have been
a polygon with clearly visible corners. When your graph has corners that shouldn’t
be there, you should repeat the process with a smaller increment until you get a graph

59
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Figure 5.1. The Unit Circle x2 + y2 = 1.

that looks smooth. Here also axis square forces the same scale on both axes;
without it the circle would look like an ellipse.

Parametric plotting is also possible with ezplot. You can obtain almost the
same picture as Figure 5.1 with the command:

>> ezplot(’cos(t)’, ’sin(t)’, [0 2*pi]); axis square

Notice that we used a semicolon after the ezplot command, but it did not prevent
the graph from appearing. In general, the semicolon suppresses only text output.

Contour Plots and Implicit Plots

A contour plot of a function of two variables is a plot of the level curves of the
function, i.e., sets of points in the x-y plane where the function assumes a constant
value. For example, the level curves of x2 + y2 are circles centered at the origin, and
the levels are the squares of the radii of the circles. Contour plots are produced in
MATLAB with meshgrid and contour. The command meshgrid produces a
grid of points in a rectangular region, with a specified spacing. This grid is used by
contour to produce a contour plot in the specified region.

You can make a contour plot of x2 + y2 as follows (see Figure 5.2):

>> [X Y] = meshgrid(-3:0.1:3, -3:0.1:3);
>> contour(X, Y, X.ˆ2 + Y.ˆ2); axis square

You can specify particular level sets by including an additional vector argument
to contour. For example, to plot the circles of radius 1,

√
2, and

√
3, type

>> contour(X, Y, X.ˆ2 + Y.ˆ2, [1 2 3])

The vector argument must contain at least two elements, so, if you want to plot a
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Figure 5.2. Contour Plot of x2 + y2.

single level set, you must specify the same level twice. This is quite useful for implicit
plotting of a curve given by an equation in x and y. For example, to plot the circle of
radius 1 about the origin, type

>> contour(X, Y, X.ˆ2 + Y.ˆ2, [1 1])

Or to plot the lemniscate x2 − y2 = (x2 + y2)2, rewrite the equation as

(x2 + y2)2 − x2 + y2 = 0

and type (see Figure 5.3)

>> [X Y] = meshgrid(-1.1:0.01:1.1, -1.1:0.01:1.1);
>> contour(X, Y, (X.ˆ2 + Y.ˆ2).ˆ2 - X.ˆ2 + Y.ˆ2, [0 0])
>> axis square
>> title(’The lemniscate xˆ2-yˆ2=(xˆ2+yˆ2)ˆ2’)

☞ In this case, we used ˆ to produce exponents in the title. You can also use _
for subscripts, and to produce a Greek letter, precede its name with a back-
slash – for example, \theta. Type doc title and look under “Exam-
ples” for other tricks with titles; these features also apply to labeling com-
mands like xlabel and ylabel. For more on annotating graphs, see the
section Customizing Graphics later in this chapter.

You can also do contour plotting with the command ezcontour, and implicit
plotting of a curve f(x, y) = 0 with ezplot. In particular, you can obtain almost
the same picture as Figure 5.2 with the command:

>> ezcontour(’xˆ2 + yˆ2’, [-3, 3], [-3, 3]); axis square

and almost the same picture as Figure 5.3 with the command:
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The lemniscate x2−y2=(x2+y2)2
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Figure 5.3. A Lemniscate.

>> ezplot(’(xˆ2 + yˆ2)ˆ2 - xˆ2 + yˆ2’, ...
[-1.1, 1.1], [-1.1, 1.1]); axis square

Field Plots

The MATLAB routine quiver is used to plot vector fields or arrays of arrows.
The arrows can either be located at equally spaced points in the plane (if x- and
y-coordinates are not given explicitly), or they can be placed at specified locations.
Sometimes some fiddling is required to scale the arrows so that they don’t come out
looking too big or too small. For this purpose, quiver takes an optional scale-factor
argument. The following code, for example, plots a vector field with a “saddle point,”
corresponding to a combination of an attractive force pointing toward the x-axis and
a repulsive force pointing away from the y-axis. The output is shown in Figure 5.4.

>> [x, y] = meshgrid(-1.1:0.2:1.1, -1.1:0.2:1.1);
>> quiver(x, -y); axis equal; axis off

Three-Dimensional Plots

MATLAB has several routines for producing three-dimensional plots.

Curves in Three-Dimensional Space

For plotting curves in 3-space, the basic command is plot3. It works like plot,
except that it takes three vectors instead of two, one for the x-coordinates, one for the
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Figure 5.4. A Vector-Field Plot of (x,−y).

y-coordinates, and one for the z-coordinates. For example, we can plot a helix with

>> T = -2:0.01:2;
>> plot3(cos(2*pi*T), sin(2*pi*T), T)
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Figure 5.5. The Helix x = cos(2πz), y = sin(2πz).

There is also a three-dimensional analog to ezplot called ezplot3; you can
instead plot the helix in Figure 5.5 with

>> ezplot3(’cos(2*pi*t)’, ’sin(2*pi*t)’, ’t’, [-2, 2])
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Surfaces in Three-Dimensional Space

There are two basic commands for plotting surfaces in 3-space: mesh and surf. The
former produces a transparent “mesh” surface, the latter an opaque shaded one. There
are two different ways of using each command, one for plotting surfaces in which the
z-coordinate is given as a function of x and y, and one for parametric surfaces in
which x, y, and z are all given as functions of two other parameters. Let us illustrate
the former with mesh and the latter with surf.

To plot z = f(x, y), one begins with a meshgrid command as in the case of
contour. For example, the “saddle surface” z = x2 − y2 can be plotted with

>> [X,Y] = meshgrid(-2:0.1:2, -2:0.1:2);
>> Z = X.ˆ2 - Y.ˆ2; mesh(X, Y, Z)
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Figure 5.6. The Surface z = x2 − y2.

The resulting graph looks better on the computer screen since MATLAB shades the
surface with a color scheme depending on the z-coordinate. We could have produced
an opaque surface instead by replacing mesh with surf.

There are also shortcut commands ezmesh and ezsurf; you can obtain a result
very similar to Figure 5.6 with

>> ezmesh(’xˆ2 - yˆ2’, [-2, 2, -2, 2])

If one wants to plot a surface that cannot be represented by an equation of the
form z = f(x, y), for example the sphere x2 + y2 + z2 = 1, then it is better to
parameterize the surface using a suitable coordinate system, in this case cylindrical or
spherical coordinates. For example, we can take as parameters the vertical coordinate
z and the polar coordinate θ in the x-y plane. If r denotes the distance to the z-
axis, then the equation of the sphere becomes r2 + z2 = 1, or r =

√
1 − z2, and so
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x =
√

1 − z2 cos θ, y =
√

1 − z2 sin θ. Thus we can produce our plot with

>> [Z, Theta] = meshgrid(-1:0.1:1, (0:0.1:2)*pi);
>> X = sqrt(1 - Z.ˆ2).*cos(Theta);
>> Y = sqrt(1 - Z.ˆ2).*sin(Theta);
>> surf(X, Y, Z); axis square
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Figure 5.7. The Unit Sphere x2 + y2 + z2 = 1.

You can also plot a surface parametrically with ezmesh or ezsurf; you can
obtain a result very similar to Figure 5.7 with

>> ezsurf(’sqrt(1-zˆ2)*cos(t)’, ...
’sqrt(1-zˆ2)*sin(t)’, ’z’, [0, 2*pi, -1, 1]); axis equal

Notice that we had to specify the t range first because it is alphabetically before z,
even though z occurs before t in the strings we entered. Rather than remember such a
rule, in MATLAB 7 you can enter functions of more than one variable as anonymous
functions, for example @(z,t) sqrt(1-z.ˆ2).*cos(t); then, since you used
z as the first input variable, you would specify its range first.

Figure Windows

So far we have discussed only graphics commands that produce or modify a single
plot. But MATLAB is also capable of opening multiple figure windows or combining
several plots in one figure window. Here we discuss some basic methods for managing
and manipulating figure windows.
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Multiple Figure Windows

When you execute the first plotting command in a given MATLAB session, the graph
appears in a new window labeled “Figure 1”. Subsequent graphics commands either
modify or replace the graph in this window. You have seen that hold on directs
that new plotting commands should add to, rather than replace, the current graph. If
instead you want to create a new graph in a separate window while keeping the old
graph on your screen, type figure to open a new window, labeled “Figure 2”. Al-
ternatively, you can select a New Figure from the File menu in either your main MAT-
LAB window or the first figure window. Subsequent graphics commands will affect
only this window, until you change your current figure again with another figure
command (e.g., type figure(1) to switch the current figure back to “Figure 1”), or
by bringing another figure to the foreground with the mouse. When multiple figure
windows are open, you can find out which is the current one by typing gcf, short for
“get current figure.” Finally, you can delete figure windows in the usual manner with
the mouse, or with the command close; see the online help for details.

The Figure Toolbar

Each figure window has a tool bar underneath its menu bar with shortcuts for several
menu items, including on the left icons for opening, saving, and printing figures. Near
the middle, there are several icons that correspond to items in the Tools menu.

The two icons with plus and minus signs control zooming in and out. Click on
the icon with a plus sign, and then click on a point in your graph to zoom in near that
point. You can click and zoom multiple times; each zoom changes the scale on both
axes by a factor of roughly 2. However, don’t click too fast, because double-clicking
resets the graph to its original state. Clicking on the icon with the minus sign allows
you to zoom out gradually. MATLAB 7 also has an icon in the shape of a hand that
allows you to click and drag the graph to pan both horizontally and vertically within
the current axes. More zooming options are available by right-clicking in the figure
window while zooming, by using the Options submenu of the Tools menu, or by
using the command zoom (see its online help).

Clicking the next icon to the right with the circular arrow allows you to rotate
three-dimensional (3D) graphics. For more 3D effects, select the Camera Toolbar
from the View menu (in MATLAB 6 and higher). You can also change the view-
point with the command view. In particular, the command view(2) projects a
figure into the x-y plane (by looking down on it from the positive z-axis), and the
command view(3) views it from the default direction in 3-space, which is in the
direction looking toward the origin from a point far out on the ray x = −0.5272t,
y = −0.6871t, z = 0.5t, t > 0.

✓ In MATLAB, any two-dimensional plot can be “viewed in 3D,” and any three-
dimensional plot can be projected into the plane. Thus Figure 5.5 above (the
helix), if followed by the command view(2), produces a circle.

In MATLAB 7, clicking the next icon to the right of the rotate icon enables the
Data Cursor, which allows you to display the coordinates of a point on a curve by
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clicking on or near the curve. Right-clicking in the figure window gives several op-
tions; changing Selection Style to Mouse Position will allow you to click on an ar-
bitrary point on the curve rather than just a data point. (Remember that the curves
plotted by MATLAB are piecewise-linear curves connecting a finite number of data
points.) This can be useful especially after zooming, because data points may then be
spaced far apart. Another way to get coordinates of a point (in earlier versions as well
as MATLAB 7) is by typing ginput(1) in the Command Window; this allows you
to click on any point in the figure window, not just on a curve. While this gives you
more flexibility, if you want the precise coordinates of a point on a curve, it is best to
use the Data Cursor, because it will always highlight a point on the curve even if you
don’t click exactly on the curve.

Also in MATLAB 7 only, the rightmost icon on the Figure Toolbar opens three
windows surrounding the figure; these are collectively known as Plot Tools, and you
can also open them with the command plottools. You can also control the display
of these three windows – the Figure Palette, the Plot Browser, and the Property Editor
– individually from the View menu. These windows enable various means of editing
figures. Many of these capabilities are also available in the Insert and Tools menus,
and from the Plot Edit Toolbar in the View menu. We will briefly discuss some
editing options in the Customizing Graphics section below, but there are many more
possibilities and we encourage you to experiment with these tools.

✓ In earlier versions of MATLAB, as well as MATLAB 7, more limited editing
capabilities are available by clicking the arrow icon to the right of the print
icon on the Figure Toolbar and then right-clicking in the figure.

Combining Plots in One Window

The command subplot divides the figure window into an array of smaller plots. The
first two arguments give the dimensions of the array of subplots, and the last argument
gives the number of the subplot (counting from left to right across the first row, then
from left to right across the next row, and so on) in which to put the output of the next
graphing command. The following example, whose output appears in Figure 5.8,
produces a 2 × 2 array of plots of the first four Bessel functions Jn, 0 ≤ n ≤ 3.

>> X = 0:0.05:40;
>> for n = 1:4

subplot(2,2,n)
plot(X, besselj(n - 1, X))

end

✓ In MATLAB you can also create subplots using the Figure Palette, which you
can enable from the View menu or as part of the Plot Tools described above.

✰ Customizing Graphics

☞ This is a more advanced topic; if you wish you can skip it on a first reading.
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Figure 5.8. Bessel Functions J0(x) (upper left), J1(x) (upper right), J2(x) (lower
left), and J3(x) (lower right).

So far in this chapter, we have discussed some commonly used MATLAB routines for
generating and manipulating plots. But often, to get a more precise result, you need to
customize or edit the graphics these commands produce. In order to do this, you must
understand a few basic principles concerning the way MATLAB stores and displays
graphics. For most purposes, the discussion here will be sufficient. But if you need
more information, you may want to consult one of the books devoted exclusively to
MATLAB graphics, such as Using MATLAB Graphics, which comes free (in PDF
format) with the software and can be accessed in the “Printable Documentation” sec-
tion in the Help Browser (or under “Full Documentation Set” from the helpdesk
in MATLAB 5.3), or P. Marchand & O. Holland, Graphics and GUIs with MATLAB,
3rd ed., Chapman & Hall/CRC, London, 2002.

Once you have created a figure, there are two basic ways to manipulate it. The cur-
rent figure can be modified by typing MATLAB commands in the Command Window,
such as the commands title and axis square that we have already encountered.
Or you can modify the figure with the mouse, using the menus and icons in the figure
window itself. Almost all of the text commands have counterparts that can be exe-
cuted directly in the figure window. So why bother learning both techniques? The
reason is that editing in the figure window is often more convenient, especially when
one wishes to “experiment” with multiple changes, while editing a figure with MAT-
LAB commands in an M-file makes your customizations reproducible. So the true
MATLAB expert uses both techniques. While the text commands generally remain
the same from one version of MATLAB to the next, the figure-window menus and
tools are significantly different in MATLAB 5.3, 6, and 7. All of these versions have
a Property Editor, but it is accessed in different ways. In MATLAB 7, you can open
it with Plot Tools as described above, or from the View menu. In MATLAB 6, select
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Edit:Current Object Properties.... In MATLAB 5.3, select File:Property Editor....
To modify objects in the figure window with the mouse, editing must be enabled in

that window. In MATLAB 6 and later, you can enable or disable editing by selecting
Tools:Edit Plot or by clicking the arrow icon to the right of the print icon. When
editing is enabled, this arrow icon is highlighted, and there is a check mark next to
Edit Plot in the Tools menu. In several places below we will tell you to click on
an object in the figure window in order to edit it. When you click on the object, it
should be highlighted with small black squares. If this doesn’t happen, then you need
to enable editing.

Annotation

In order to insert labels or text into a plot, you can use the commands text, xlabel,
ylabel, zlabel, and legend, in addition to title. As the names suggest,
xlabel, ylabel, and zlabel add text next to the coordinate axes, legend puts
a “legend” on the plot, and text adds text at a specific point. These commands take
various optional arguments that can be used to change the font family and font size
of the text. As an example, let’s illustrate how to modify our plot of the lemniscate
(Figure 5.3) by adding and modifying text:

>> title(’The lemniscate xˆ2-yˆ2=(xˆ2+yˆ2)ˆ2’, ’FontSize’, ...
20, ’FontName’, ’Helvetica’, ’FontWeight’, ’bold’)
>> text(0, 0, ’ \leftarrow a node, also an inflection’, ...
’FontSize’, 12)
>> text(0.2, -0.1, ’point for each branch’, ’FontSize’, 12)
>> xlabel x, ylabel y

The lemniscate x2−y2=(x2+y2)2

← a node, also an inflection
point for each branch
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Figure 5.9. The Lemniscate from Figure 5.3 with Annotation and a Larger Title.
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Notice that many symbols (such as the arrow pointing to the left in Figure 5.9) can
be inserted into a text string by calling them with names starting with \. (If you’ve
used the scientific typesetting program TEX, you’ll recognize the convention here.) In
most cases the names are self-explanatory. For example, you get a Greek π by typing
\pi, a summation sign

∑
by typing either \Sigma (for a capital ‘sigma’) or \sum,

and arrows pointing in various directions with \leftarrow, \uparrow, and so
on. For more details and a complete list of available symbols, see the listing for “Text
Properties” in the Help Browser (you can find this listing from the “Search” tab in the
Help Browser, or type doc text and click on “Text Properties” at the bottom of its
page).

✓ In MATLAB 6 and later, you can insert the same types of annotation using the
Insert menu in the Figure Window. In MATLAB 7, many more annotations
are available by enabling the Plot Edit Toolbar, the Figure Palette, and/or the
Property Editor. You can also use the Property Editor to change the font of a
text label; click on the text you want to change, then go to the Property Editor.

Change of Plot Style

Another important way to change the style of graphics is to modify the color or line
style in a plot or to change the tick marks and labeling on the axes. Within a plot
command, you can change the color of a graph, or plot with a dashed or dotted line, or
mark the plotted points with special symbols, simply by adding a string third argument
for every x-y pair. Symbols for colors are ’y’ for yellow, ’m’ for magenta, ’c’ for
cyan, ’r’ for red, ’g’ for green, ’b’ for blue, ’w’ for white, and ’k’ for black.
Symbols for point markers include ’o’ for a circle, ’x’ for a cross, ’+’ for a plus
sign, and ’*’ for a star. Symbols for line styles include ’-’ for a solid line, ’:’ for
a dotted line, ’--’ for a dashed line. If a point style is given but no line style, then
the points are plotted but no curve is drawn connecting them. (The same methods
work with plot3 in place of plot.) For example, you can produce a solid red sine
curve together with a dotted blue cosine curve, marking all the local maximum points
on each curve with a distinctive symbol of the same color as the plot, as follows:

>> X = (-2:0.02:2)*pi; Y1 = sin(X); Y2 = cos(X);
>> plot(X, Y1, ’r-’, X, Y2, ’b:’); hold on
>> X1 = [-3*pi/2 pi/2]; Y3 = [1 1]; plot(X1, Y3, ’r*’)
>> X2 = [-2*pi 0 2*pi]; Y4 = [1 1 1]; plot(X2, Y4, ’b+’)
>> axis([-7 7 -1.1 1.1])

Here you may want the tick marks on the x-axis located at multiples of π. This can be
done with the command set, which is used to change various properties of graphics.
To apply it to the axes, it has to be combined with the command gca, which stands
for “get current axes.” The code

>> set(gca, ’XTick’, (-2:2)*pi, ’XTickLabel’, ...
’-2pi|-pi|0|pi|2pi’, ’FontSize’, 16)

in combination with the code above gets the current axes, sets the ticks on the x-axis
to go from −2π to 2π in multiples of π, and then labels these ticks symbolically
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(rather than in decimal notation, which is ugly here). It also increases the size of the
labels to a 16-point font. The result is shown in Figure 5.10.
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Figure 5.10. Two Periods of sin x and cos x.

Incidentally, you might wonder how to label the ticks as −2π, −π, etc., instead of
-2pi, -pi, and so on. This is trickier but you can do it by typing

>> set(gca, ’FontName’, ’Symbol’)
>> set(gca, ’XTickLabel’, ’-2p|-p|0|p|2p’)

since in the Symbol font, π occupies the slot held by p in text fonts.

✓ In MATLAB 7, you can again use the Property Editor to make the same
types of stylistic changes. Click on a curve and go to the Property Editor to
change its style, color, width, etc. In a 3D plot, you can click on a surface
and see options for changing its coloring and other properties. To change the
tick marks, labeling, etc., click on the axes or a blank area inside them to
focus the Property Editor on the axes. In MATLAB 6, click on a curve and
select Edit:Current Object Properties... to modify its properties, or select
Edit:Axes Properties... to change the font for the tick labels.

Full-Fledged Customization

What about changes to other aspects of a plot? The commands get and set can
be used to obtain a complete list of the properties of the objects in a figure window
and then to modify them. These objects and properties are arranged in a hierarchical
structure, with each object identified by a floating-point number called a handle. If
you type get(gcf), you will “get” a (rather long) list of properties of the current
figure (whose handle is returned by the function gcf). Some of these might read
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Color = [0.8 0.8 0.8]
CurrentAxes = [151.001]
Children = [151.001]

Here Color gives the background color of the plot in red-green-blue (RGB) coordi-
nates, where [0 0 0] is black and [1 1 1] is white; [0.8 0.8 0.8] is light gray. Notice
that CurrentAxes and Children in this example have the same value, the one-
element vector containing the funny-looking number 151.001. This number is the
handle of the current axes, which would also be returned by the command gca (“get
current axes”). The fact that this handle also shows up under Children indicates
that the axes are “children” of the figure, i.e., they lie one level down in the hierar-
chical structure. Typing get(gca) would then give you a list of axis properties,
including the handles of further Children such as Line objects, within which you
would find the XData and YData encoding the actual plot.

➯ In the example above, 151.001 is not the exact value of the axes handle,
just its first few decimal places. So, typing get(151.001) would yield
an error message. To retrieve the exact value of Children in the exam-
ple above, type get(gcf, ’Children’). In many cases, a figure will
have multiple children, in which case this command will return a vector
of handles.

Once you have located the properties you’re interested in, they can be changed
with set. For example,

>> set(gcf, ’Color’, [1 0 0])

changes the background color of the border of the figure window to red, and

>> set(gca, ’Color’, [1 1 0])

changes the background color of the plot itself (a child of the figure window) to yellow
(which in the RGB scheme is half red, half green).

This “one at a time” method for locating and modifying figure properties can be
speeded up using the command findobj to locate the handles of all the descendents
(the main figure window, its children, children of children, etc.) of the current fig-
ure. One can also limit the search to handles containing elements of a specific type.
For example, findobj(’type’, ’line’) hunts for all handles of objects con-
taining a Line element. Once you have located these, you can use set to change
the LineStyle from solid to dashed, etc. In addition, the low-level graphics com-
mands line, rectangle, fill, surface, and image can be used to create new
graphics elements within a figure window.

✓ In MATLAB 7, you can also see and modify a full list of properties for the
figure, axes, or other object using the Property Editor. Click on the object
and then click on the “Inspector...” button in the Property Editor. To select
the figure itself, click on the border of the figure, outside the axes.

As an example of these techniques, the following code creates a chessboard on a
white background, as shown in Figure 5.11.
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>> white = [1 1 1]; gray = 0.7*white;
>> a = [0 1 1 0]; b = [0 0 1 1]; c = [1 1 1 1];
>> figure; hold on
>> for k = 0:1, for j = 0:2:6

fill(a’*c + c’*(0:2:6) + k, b’*c + j + k, gray)
end, end
>> plot(8*a’, 8*b’, ’k’)
>> set(gca, ’XTickLabel’, [], ’YTickLabel’, [])
>> set(gcf, ’Color’, white); axis square

Figure 5.11. A Chessboard.

Here white and gray are the RGB codings for white and gray. The double for
loop draws the 32 dark squares on the chessboard, using fill, with j indexing the
dark squares in a single vertical column, with k = 0 giving the odd-numbered rows,
and with k = 1 giving the even-numbered rows. Notice that fill here takes three
arguments: a matrix, each of whose columns gives the x-coordinates of the vertices
of a polygon to be filled (in this case a square), a second matrix whose corresponding
columns give the y-coordinates of the vertices, and a color. We’ve constructed the
matrices with four columns, one for each of the solid squares in a single horizontal
row. The plot command draws the solid black line around the outside of the board.
Finally, the first set command removes the printed labels on the axes, and the second
set command resets the background color to white.

✰ Images, Animations, and Sound

MATLAB is also able to create and manipulate full-color images, animations, and
sound files. In addition to the command-line methods described below, you can open
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a media file in a format that MATLAB supports by double-clicking on it in the Current
Directory Browser or by selecting File:Import Data....

Images

MATLAB can read, write, and edit images, such as those created by a digital camera,
found on the World Wide Web, or created from within MATLAB. An image is simply
a two-dimensional array of tiny colored squares called “pixels.” The image may be
stored in a file in a variety of formats, including png, jpeg, and gif. In MATLAB,
a color image with height h pixels and width w pixels is generally stored in one of
two ways: as an RGB image or an indexed image. An RGB image is represented as
an h × w × 3 array, so that the color of each pixel is specified by three values: a red
intensity, a green intensity, and a blue intensity. (A similar type of image is grayscale,
which is represented as an h×w array of pixel intensities.) An indexed image consists
of an h × w array together with an auxiliary c × 3 array called a “colormap”; each
element in the first array represents the index of a row in the colormap, and this row
gives the RGB values for the corresponding pixel. (What MATLAB calls RGB format
is often called “true color” in graphics programming; an indexed image is often called
“pseudocolor.”)

The command imread will read an image from any of a large variety of image-
file formats; see the online help for supported formats. Some formats, such as png,
can store RGB or indexed images. Other formats can store only one type or the other;
gif images are always indexed, whereas jpeg images are never indexed. Most
images you find on the World Wide Web will be stored in RGB format unless they
are gif files. To read an RGB image from the file picture.png and store it in the
array rgbpic, type

>> rgbpic = imread(’picture.png’);

You can read an indexed image with imread by assigning its output to two variables,
one for the image array and one for the colormap. You can then convert these arrays
to a single RGB array with ind2rgb. For example:

>> [indpic, map] = imread(’picture.gif’);
>> rgbpic = ind2rgb(indpic, map);

✓ Converting from RGB to indexed format is harder because generally the num-
ber of different colors in the image must be reduced; colormaps often have
256 or fewer colors. MATLAB’s Image Processing Toolbox has a command
rgb2ind that offers several algorithms for making this conversion.

The command image displays an image in a figure window. For an RGB image
rgbpic, simply type

>> image(rgbpic)
>> axis equal tight

The second command is not necessary, but ensures that the image is displayed in its
intended aspect ratio. For an indexed image indpic with colormap map, type
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>> image(indpic)
>> colormap(map)

The command colormap changes the colormap of the current axes or, with no input
arguments, outputs the current colormap.

You can edit an image by changing the values in the image array. Notice that
when you display an image, the axes are labeled with the indices of the image array.
You can use the zoom feature of the figure window (see the Figure Windows section
earlier in this chapter) to locate more precisely the indices of a particular feature of
the image, or even an individual pixel. Theoretically at least, you can then edit the
image in any way you want by changing the numbers in the array. Here we describe
how to carry out several common manipulations in a practical manner.

➯ We will describe mainly how to edit RGB images, since this format al-
lows you more freedom and you can always convert from indexed for-
mat to RGB as described above. However, RGB images are stored in
three-dimensional arrays, which may take some time to get used to. Pre-
viously in this book we have discussed only two-dimensional arrays, and
some MATLAB commands that manipulate two-dimensional arrays do
not work for three-dimensional arrays.

To reverse an image up-to-down or left-to-right, you simply need to reverse the
array with flipdim. For example,

>> image(flipdim(rgbpic, 2))

will display a left-to-right mirror image, while flipdim(rgbpic, 1) reverses
the array up-to-down. (For indexed images and other two-dimensional arrays, you
can use the more mnemonic commands fliplr and flipud instead.)

To crop an image, select the appropriate subarray. For example, to remove 50
pixels from the top and bottom of the image and 100 pixels from the left and right,
type

>> newpic = rgbpic(51:end-50, 101:end-100, :);

You can then display the cropped image newpic as described above, or save it as
described below.

To examine the color of an individual pixel, you can display its RGB values in the
Command Window and/or display it in a figure window. For example, to examine the
pixel of rgbpic in the lower left-hand corner, type:

>> rgbpic(end, 1, :)

ans(:,:,1) =
240

ans(:,:,2) =
114

ans(:,:,3) =
14

The output above gives (hypothetical) red, green, and blue values for the pixel. To see
this color in the current figure window, type image(rgbpic(end, 1, :)). You
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can then adjust the color as desired; for instance, typing rgbpic(end, 1, 2) =
180 will increase the green intensity, making the color lighter and more yellow.

Of course, changing a single pixel will not change the appearance of the figure
much, but you can also change the color of a whole block of pixels or the entire
image in a similar manner. For example, to black out a rectangle within the picture,
set all of the values in the corresponding subarray to 0. Thus, rgbpic(40:60,
90:110, :) = 0 will change to black all the pixels in a 21-by-21 square centered
50 pixels from the top and 100 pixels from the left of the image.

✓ Changing the numbers in the array as we have just described will not change
the image displayed in the figure window until you issue a new image com-
mand.

In addition to manipulating images that you read into MATLAB, you can create
your own images to visualize numerical data. Suppose, for example, that you have an
array temp that contains temperatures for some geographical region. You can display
the temperatures as an indexed image by typing

>> imagesc(temp)

The command imagesc works like image, except that it rescales the values in a
two-dimensional array so that the highest number corresponds to the highest num-
bered color in the current colormap and the lowest number corresponds to the lowest
numbered color. With the default colormap in effect, hot regions will be colored red
and cold regions will be colored blue, with other colors representing intermediate
temperatures.

To display the colormap next to the image, type colorbar. Notice that the
numbers on this bar correspond to the numbers in your original array, and are inde-
pendent of the rescaling done by imagesc. If you want a different colormap, you
can create your own or use one of the other colormaps built into MATLAB; type doc
colormap for a selection. For example, to transform the temperature map described
above into a black-and-white image where white represents hot, black represents cold,
and intermediate temperatures are in shades of gray, type colormap(gray).

Finally, you can save an image in one of the standard formats like png with the
command imwrite. For example, to save newpic to the file newpict.png, type

>> imwrite(newpic, ’newpict.png’)

➯ In Chapter 3, we discussed how to save a figure in a format such as png
using either print or File:Save As... from the figure window menu.
This will save the entire figure, including the border and axis labels, into
the image file. If you only want to save the image inside the axes, use
imwrite.

Animations

The simplest way to produce an animated picture is with comet, which produces a
parametric plot of a curve (the way plot does), except that you can see the curve
being traced out in time. For example,
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>> T = (0:0.01:2)*pi;
>> figure, axis equal, axis([-1 1 -1 1]), hold on
>> comet(cos(T), sin(T))

displays uniform circular motion.

✓ We used hold on here not to save a previous graph, but to preserve the axis
properties we had just set. Without hold on, MATLAB would revert to its
default axes, and the curve would look elliptical rather than circular as it is
being traced.

For more complicated animations, you can use getframe and movieview.
The command getframe captures the active figure window for one frame of the
movie, and movieview (available in MATLAB 6 and later) then plays back the
result in a separate window. For example, the following commands produce a movie
of a vibrating string.

>> X = 0:0.01:1;
>> for n = 0:50

plot(x, sin(n*pi/5)*sin(pi*X)), axis([0, 1, -2, 2])
M(n+1) = getframe;

end
>> movieview(M)

The axis command here is important, to ensure that each frame of the movie is
drawn with the same coordinate axes. (Otherwise, the scale of the axes will be differ-
ent in each frame, and the resulting movie will be totally misleading.) The semicolon
after getframe is also important, in order to avoid the spewing forth of a lot of
numerical data with each frame of the movie.

➯ Make sure that while MATLAB executes the loop that generates the
frames, you do not cover the active figure window with another window
(such as the Command Window). If you do, the contents of the other
window will be stored in the frames of the movie.

✓ You can also use movie (which, unlike movieview, is available in MAT-
LAB 5.3) to play back the movie in the current figure window. This command
allows additional options, such as varying the frame rate; see the online help
for details.

Once you have created a movie, you can use movie2avi (in MATLAB 6 and
later) to save it as an AVI file, which is a standard format that can be used in other
movie-viewing programs, such as Windows Media Player and QuickTime. For exam-
ple, to save the movie created above to the file string.avi, type movie2avi(M,
’string.avi’).

Sound

You can use sound to generate sound on your computer (provided that your computer
is suitably equipped). This command takes a vector, views it as the waveform of a
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sound, and “plays” it. A “sinusoidal” vector corresponds to a pure tone, and the
frequency of the sinusoidal signal determines the pitch. Thus the following example
plays the motto from Beethoven’s Fifth Symphony:

>> x = (0:0.1:250)*pi; y = zeros(1,200); z = (0:0.1:1000)*pi;
>> sound([sin(x), y, sin(x), y, sin(x), y, sin(z*4/5), y, ...
sin(8/9*x), y, sin(8/9*x), y, sin(8/9*x), y, sin(z*3/4)]);

Notice that the zero vector y in this example creates a very short pause between
successive notes.

For sound, the values in the input vector should be between −1 and 1. Within
that range, the amplitude of the vector determines the volume of the sound; to play
the sound above at half volume, you can multiply the input vector by 0.5. For a vector
with an amplitude greater than 1, you can use soundsc to rescale the vector to the
range −1 to 1 before playing it.

By default, the sound is played at 8192 samples per second, so the length of the
vector, divided by 8192, is the length of the sound in seconds. You can change the
sample rate with an optional second argument to sound; this will change both the
pitch and the duration of the sound you hear.

Finally, you can read and write sound files in MATLAB, but only in two formats:
wav and au. More popular formats such as mp3 are not available, but you may have
software that converts other formats to and from wav. The commands wavread and
wavwrite read and write this format; see the online help for details.



Practice Set B

Calculus, Graphics, and Linear
Algebra

Symbolic Problems 2, 3, 5–7, and parts of 10–12 require the Symbolic Math Toolbox.
The others do not.

1. Use contour to do the following.

(a) Plot the level curves of the function f(x, y) = 3y + y3 − x3 in the re-
gion where x and y are between −1 and 1 (to get an idea of what the
curves look like near the origin), and in some larger regions (to get the big
picture).

(b) Plot the curve 3y + y3 − x3 = 5.

(c) Plot the level curve of the function f(x, y) = y lnx + x ln y that contains
the point (1, 1).

2. Find the derivatives of the following functions, and if possible, simplify each
answer:

(a) f(x) = 6x3 − 5x2 + 2x − 3

(b) f(x) =
2x − 1
x2 + 1

(c) f(x) = sin(3x2 + 2)

(d) f(x) = arcsin(2x + 3)

(e) f(x) =
√

1 + x4

(f) f(x) = xr

(g) f(x) = arctan(x2 + 1).

3. See whether MATLAB can do the following integrals symbolically, and for the
indefinite integrals, check the results by differentiating:

(a)
∫ π/2
0 cos x dx

(b)
∫

x sin(x2) dx

(c)
∫

sin(3x)
√

1 − cos(3x) dx

(d)
∫

x2
√

x + 4 dx

79
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(e)
∫ ∞
−∞ e−x2

dx.

4. Compute the following integrals numerically using quadl.

(a)
∫ π
0 esin xdx.

(b)
∫ 1
0

√
x3 + 1 dx.

(c)
∫ ∞
−∞ e−x2

dx. In this case, also find the error in the numerical answer, by
comparing it with the exact answer found in Problem 3.

5. Evaluate the following limits:

(a) lim
x→0

sin x

x

(b) lim
x→−π

1 + cos x

x + π

(c) lim
x→∞x2 e−x

(d) lim
x→1−

1
x − 1

(e) lim
x→0+

sin
(

1
x

)
.

6. Compute the following sums:

(a)
n∑

k=1

k2

(b)
n∑

k=0

rk

(c)
∞∑

k=0

xk

k!
; the MATLAB function factorial does not work with sym-

bolic input, but you can use either sym(’k!’) or the gamma func-
tion Γ(x) =

∫ ∞
0 e−ttx−1 dt, called gamma in MATLAB, which satisfies

Γ(k + 1) = k!

(d)
∞∑

k=−∞

1
(z − k)2

.

7. Find the Taylor polynomial of the indicated degree n at the indicated point c
for the following functions:

(a) f(x) = ex, n = 6, c = 0

(b) f(x) = sinx, n = 4 and 6, c = 0

(c) f(x) = sinx, n = 5, c = 2

(d) f(x) = tanx, n = 6, c = 0

(e) f(x) = lnx, n = 4, c = 1
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(f) f(x) = erf(x), n = 8, c = 0.

8. Plot the following surfaces:

(a) z = sinx sin y for −3π ≤ x ≤ 3π and −3π ≤ y ≤ 3π,

(b) z = (x2 + y2) cos(x2 + y2) for −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.

9. Create a 17-frame movie, whose frames show filled red circles of radius 1/2
centered at the points

(
4 cos(jπ/8), 4 sin(jπ/8)

)
, j = 0, 1, . . ., 16. Make sure

that all the circles are drawn on the same set of axes, and that they look like
circles, not ellipses.

10. In this problem we use the backslash operator, or “left-matrix-divide” operator
introduced in the section Solving Linear Systems of Chapter 4.

(a) Use the backslash operator to solve the system of linear equations in Prob-
lem 3 of Practice Set A.

(b) Now try the same method on Problem 4 of Practice Set A. MATLAB finds
one, but not all, answer(s). Can you explain why? If not, see Problem 11
below, as well as part (d) of this problem

(c) Next try the method on this problem:

w + 3x − 2y + 4z = 1
−2w + 3x + 4y − z = 1
−4w − 3x + y + 2z = 1

2w + 3x − 4y + z = 1.

Check your answer by matrix multiplication.

(d) Finally, try the matrix division method on

ax + by = u

cx + dy = v.

Don’t forget to declare the variables to be symbolic. Your answer should
involve a fraction, and so will be valid only when its denominator is non-
zero. Evaluate det on the coefficient matrix of the system. Compare this
with the denominator.

11. We deal in this problem with 3× 3 matrices, although the concepts are valid in
any dimension.

(a) Consider the rows of a square matrix A. They are vectors in 3-space and
so span a subspace of dimension 3, 2, 1, or possibly 0 (if all the entries
of A are zero). That number is called the rank of A. The MATLAB com-
mand rank computes the rank of a matrix. Try it on the four coefficient
matrices in each of the parts of Problem 10. Comment on MATLAB’s
answer for the fourth one.
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(b) An n × n matrix is non-singular if its rank is n. Which of the four you
computed in part (a) are non-singular?

(c) Another measure of non-singularity is given by the determinant – a fun-
damental result in linear algebra is that a matrix is non-singular precisely
when its determinant is non-zero. In that case a unique matrix B exists
that satisfies AB = BA = the identity matrix. We denote this inverse
matrix by A−1. MATLAB can compute inverses with inv. Compute
det(A) for the four coefficient matrices, and for the non-singular ones,
find their inverses. Note: the matrix equation Ax = b has a unique solu-
tion, namely x = A−1b = A\b, when A is non-singular.

12. As explained in Chapter 4, when you compute [U, R] = eig(A), each
column of U is an eigenvector of A associated with the eigenvalue that appears
in the corresponding column of the diagonal matrix R. This says exactly that
AU = UR.

(a) Verify the equality AU = UR for each of the coefficient matrices in
Problem 10.

(b) In fact, rank(A) = rank(U), so, when A is non-singular,

U−1AU = R.

Thus, if two non-singular matrices A and B have the same set of eigen-
vectors, then the fact that diagonal matrices commute implies the same
for A and B. Verify these facts for the two matrices

A =

⎛
⎝ 1 0 2
−1 0 4
−1 −1 5

⎞
⎠ , B =

⎛
⎝5 2 −8

3 6 −10
3 3 −7

⎞
⎠ ;

that is, show that the matrices of eigenvectors are the “same” – that is, the
columns are the same up to a scalar multiple – and verify that AB = BA.

13. This problem, having to do with genetic inheritance, is based on Chapter 12 in
C. Rorres and H. Anton, Applications of Linear Algebra, 3rd ed., John Wiley
& Sons, New York, 1984. In a typical inheritance model, a trait in the offspring
is determined by the passing of a genotype from the parents, where there are
two independent possibilities from each parent, say A and a, and each is equally
likely. (A is the dominant gene, and a is recessive.) Then we have the following
table of probabilities of the possible genotypes for the offspring for all possible
combinations of the genotypes of the parents:

Genotype of Parental
Offspring Genotype

AA-AA AA-Aa AA-aa Aa-Aa Aa-aa aa-aa
AA 1 1/2 0 1/4 0 0
Aa 0 1/2 1 1/2 1/2 0
aa 0 0 0 1/4 1/2 1
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Now suppose that one has a population in which mating occurs only with one’s
identical genotype. (That’s not far-fetched if we are considering a controlled
plant or vegetable population.) Next suppose that x0, y0, and z0 denote the
percentages of the population with genotype AA, Aa, and aa, respectively, at
the outset of observation. We then denote by xn, yn, and zn the percentages
in the nth generation. We are interested in knowing these numbers for large n,
and how they depend on the initial population. Clearly

xn + yn + zn = 1, n ≥ 0.

Now we can use the table to express a relationship between the nth and (n+1)st
generations. Because of our presumption on mating, only the first, fourth and
sixth columns are relevant. Indeed a moment’s reflection reveals that we have

xn+1 = xn +
1
4
yn

yn+1 =
1
2
yn

zn+1 = zn +
1
4
yn.

(a) Write these equations as a single matrix equation Xn+1 = MXn, n ≥ 0.
Explain carefully what the entries of the column matrix Xn are, and what
the coefficients of the square matrix M are.

(b) Apply the matrix equation recursively to express Xn in terms of X0 and
powers of M .

(c) Next use MATLAB to compute the eigenvalues and eigenvectors of M .

(d) From Problem 12 you know that MU = UR, where R is the diagonal
matrix of eigenvalues of M . Solve that equation for M . Can you see
what R∞ = limn→∞ Rn is? Use that and your above expression of M in
terms of R to compute M∞ = limn→∞ Mn.

(e) Describe the eventual population distribution by computing M∞X0.

(f) Check your answer by directly computing Mn for large specific values of
M . (Hint: MATLAB can compute the powers of a matrix M by entering
Mˆ10, for example.)

(g) You can alter the fundamental presumption in this problem by assuming,
alternatively, that all members of the nth generation must mate only with
a parent whose genotype is purely dominant. Compute the eventual pop-
ulation distribution of that model. Chapters 12–14 in Rorres and Anton
have other interesting models.

14. ✰ The French flag is 1.5 times as wide as it is high, and is divided into three
vertical stripes, colored (in order) blue, white, and red. The Italian flag is the
same, except that blue is replaced by green. Create a 200 × 300 × 3 array
representing the French flag, view it in a figure window, and convert it to a
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jpeg file tricolore.jpg. Do the same with the Italian flag, this time
converting to a file italia.jpg. Finally, create a movie showing the French
flag “transform” into the Italian one.



Chapter 6

MATLAB Programming

Every time you create an M-file, you are writing a computer program using the MAT-
LAB programming language. You can do quite a lot in MATLAB using no more than
the most basic programming techniques that we have already introduced. In particu-
lar, we discussed simple loops (using for) and a rudimentary approach to debugging
in Chapter 3. In this chapter, we will cover some further programming commands and
techniques that are useful for attacking more complicated problems with MATLAB.
If you are already familiar with another programming language, much of this material
will be quite easy for you to pick up!

✓ Many MATLAB commands are themselves M-files, which you can exam-
ine using type or edit, e.g., enter type isprime to see the M-file for
the command isprime. You can learn a lot about MATLAB programming
techniques by inspecting the built-in M-files.

Branching

For many user-defined functions, you can use a function M-file that executes the same
sequence of commands for each input. However, one often wants a function to per-
form a different sequence of commands in different cases, depending on the input.
You can accomplish this with a branching command, and, as in many other program-
ming languages, branching in MATLAB is usually done with the command if, which
we will discuss now. Later we will describe the other main branching command,
switch.

Branching with if

For a simple illustration of branching with if, consider the following function M-file
absval.m, which computes the absolute value of a real number.

function y = absval(x)
if x >= 0

y = x;
else

y = -x;
end

The first line of this M-file states that the function has a single input x and a single
output y. If the input x is non-negative, the if statement is determined by MATLAB
to be true. Then the command between the if and the else statements is executed
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to set y equal to x, while MATLAB skips the command between the else and end
statements. On the other hand, if x is negative, then MATLAB skips to the else
statement and executes the succeeding command, setting y equal to -x. As with a
for loop, the indentation of commands above is optional; it is helpful to the human
reader and is done automatically by MATLAB’s built-in Editor/Debugger.

✓ Most of the examples in this chapter will give peculiar results if their input
is of a different type than intended. The M-file absval.m is designed only
for scalar real inputs x, not for complex numbers or vectors. If x is complex
for instance, then x >= 0 checks only whether the real part of x is non-
negative, and the output y will be complex in either case. MATLAB has a
built-in function abs that works correctly for vectors of complex numbers.

In general, if must be followed on the same line by an expression that MAT-
LAB will test to be true or false; see the section below on Logical Expressions for
a discussion of available expressions and how they are evaluated. After some inter-
vening commands, there must be (as with for) an end statement. In between, there
may be one or more elseif statements (see below) and/or an else statement (as
above). If the result of the test is true, MATLAB executes all commands between
the if statement and the first elseif, else, or end statement, then skips all other
commands until after the end statement. If the result of the test is false, MATLAB
skips to the first elseif, else, or end statement and proceeds from there, carry-
ing out a new test in the case of an elseif statement. In the example below, we
reformulate absval.m so that no commands are necessary if the result of the test is
false, eliminating the need for an else statement.

function y = absval(x)
y = x;
if y < 0

y = -y;
end

The elseif statement is useful if there are more than two alternatives and they
can be distinguished by a sequence of true/false tests. It is essentially equivalent to
an else statement followed immediately by a nested if statement. In the example
below, we use elseif in an M-file signum.m, which evaluates the function

sgn(x) =

⎧⎨
⎩

1 x > 0,
0 x = 0,

−1 x < 0.

(Again, MATLAB has a built-in function sign that implements this function for
more general inputs than we consider here.)

function y = signum(x)
if x > 0

y = 1;
elseif x == 0

y = 0;
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else
y = -1;

end

Here if the input x is positive, then the output y is set to 1 and all commands from
the elseif statement to the end statement are skipped. (In particular, the test in the
elseif statement is not performed.) If x is not positive, then MATLAB skips to the
elseif statement and tests to see whether x equals 0. If so, y is set to 0, otherwise
y is set to -1. Notice that MATLAB requires a double equals sign == to test for
equality; a single equals sign is reserved for the assignment of values to variables.

✓ Like for and the other programming commands you will encounter, if and
its associated commands can be used in the Command Window. Doing so
can be useful for practice with these commands, but they are intended mainly
for use in M-files. In our discussion of branching, we consider primarily the
case of function M-files; branching is less often used in script M-files.

Logical Expressions

In the examples above, we used relational operators such as >=, >, and == to form a
logical expression, and instructed MATLAB to choose between different commands
according to whether the expression is true or false. Type help relop to see all
of the available relational operators. Some of these operators, like & (AND) and |
(OR) can be used to form logical expressions that are more complex than those that
simply compare two numbers. For example, the expression (x > 0) | (y > 0)
will be true if x or y (or both) is positive, and false if neither is positive. In this
particular example, the parentheses are not necessary, but generally compound logical
expressions like this are both easier to read and less prone to errors if parentheses are
used to avoid ambiguities.

So far in our discussion of branching, we have considered only expressions that
can be evaluated as true or false. While such expressions are sufficient for many
purposes, you can also follow if or elseif with any expression that MATLAB can
evaluate numerically. In fact, MATLAB makes almost no distinction between logical
expressions and ordinary numerical expressions. Consider what happens if you type
a logical expression by itself in the Command Window:

>> 2 > 3

ans =
0

When evaluating a logical expression, MATLAB assigns it a value of 0 (for FALSE)
or 1 (for TRUE). Thus if you type 2 < 3, the answer is 1. The relational opera-
tors are treated by MATLAB like arithmetic operators, inasmuch as their output is
numerical.
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✓ MATLAB makes a subtle distinction between the output of relational opera-
tors and ordinary numbers. For example, if you type whos after the command
above, you will see that ans is a logical array. We will give an example of
how this feature can be used shortly. Type help logical for more infor-
mation.

Here is another example:

>> 2 | 3

ans =
1

The OR operator | gives the answer 0 if both operands are zero and 1 otherwise.
Thus, while the output of relational operators is always 0 or 1, any non-zero input
to operators such as & (AND), | (OR), and ˜ (NOT) is regarded by MATLAB to be
true, while only 0 is regarded to be false.

If the inputs to a relational operator are vectors or matrices rather than scalars,
then, as for arithmetic operations such as + and .*, the operation is done term-by-
term and the output is an array of zeros and ones. Here are some examples:

>> [2 3] < [3 2]

ans =
1 0

>> x = -2:2; x >= 0

ans =
0 0 1 1 1

In the second case, x is compared term-by-term with the scalar 0. Type help
relop for more information.

You can use the fact that the output of a relational operator is a logical array
to select the elements of an array that meet a certain condition. For example, the
expression x(x >= 0) yields a vector consisting of only the non-negative elements
of x (or more precisely, those with non-zero real part). So, if x = -2:2 as above,

>> x(x >= 0)

ans =
0 1 2

If a logical array is used to choose elements from another array, the two arrays must
have the same size. The elements corresponding to each 1 in the logical array are
selected while the elements corresponding to each 0 are not. In the example above,
the result is the same as if we had typed x(3:5), but in this case 3:5 is an ordinary
numerical array specifying the numerical indices of the elements to choose.

Next, we discuss how if and elseif decide whether an expression is true or
false. For an expression that evaluates to a scalar real number, the criterion is the same
as described above – namely, a non-zero number is treated as true while 0 is treated
as false. However, for complex numbers only the real part is considered – thus, in
an if or elseif statement, any number with non-zero real part is treated as true,
while numbers with zero real part are treated as false. Furthermore, if the expression
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evaluates to a vector or matrix, an if or elseif statement must still result in a
single true-or-false decision. The convention MATLAB uses is that all elements must
be true – that is, all elements must have non-zero real part – for an expression to be
treated as true. If any element has zero real part, then the expression is treated as false.

You can manipulate the way branching is done with vector input by inverting
tests with ˜ and using the commands any and all. For example, the statements if
x == 0; ...; end will execute a block of commands (represented here by ...)
when all the elements of x are zero; if you would like to execute a block of commands
when any of the elements of x is zero you could use the form if x ˜= 0; else;
...; end. Here ˜= is the relational operator for “does not equal,” so the test fails
when any element of x is zero, and execution skips past the else statement. You can
achieve the same effect in a more straightforward manner using any, which outputs
true when any element of an array is non-zero: if any(x == 0); ...; end
(remember that if any element of x is zero, the corresponding element of x == 0 is
non-zero). Likewise all outputs true when all elements of an array are non-zero.

Here is a series of examples to illustrate some of the features of logical expressions
and branching that we have just described. Suppose that you want to create a function
M-file that computes the following function:

f(x) =
{

sin(x)/x x �= 0,
1 x = 0.

You could construct the M-file as follows.

function y = f(x)
if x == 0

y = 1;
else

y = sin(x)/x;
end

This will work fine if the input x is a scalar, but not if x is a vector or matrix. Of course
you could change / to ./ in the second definition of y, and change the first definition
to make y the same size as x. But, if x has both zero and non-zero elements, then
MATLAB will declare the if statement to be false, and use the second definition.
Then some of the entries in the output array y will be NaN, “not a number,” because
0/0 is an indeterminate form.

One way to make this M-file work for vectors and matrices is to use a loop to
evaluate the function element-by-element, with an if statement inside the loop.

function y = f(x)
y = ones(size(x));
for n = 1:prod(size(x))

if x(n) ˜= 0
y(n) = sin(x(n))/x(n);

end
end

In the M-file above, we first create the eventual output y as an array of ones with the
same size as the input x. Here we use size(x) to determine the number of rows
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and columns of x; recall that MATLAB treats a scalar or a vector as an array with one
row and/or one column. Then prod(size(x)) yields the number of elements in x.
So in the for statement n varies from 1 to this number. For each element x(n), we
check to see whether it is non-zero, and if so we redefine the corresponding element
y(n) accordingly. (If x(n) equals 0, there is no need to redefine y(n) since we
defined it initially to be 1.)

✓ We just used an important but subtle feature of MATLAB, namely that each
element of a matrix can be referred to with a single index; for example if
x is a 3-by-2 array then its elements can be enumerated as x(1), x(2),
. . . , x(6). In this way, we avoided using a loop within a loop. Similarly,
we could use length(x(:)) in place of prod(size(x)) to count the
total number of entries in x. However, one has to be careful. If we had not
predefined y to have the same size as x, but rather used an else statement
inside the loop to let y(n) be 1 when x(n) is 0, then y would have ended
up a 1-by-6 array rather than a 3-by-2 array. We then could have used the
command y = reshape(y, size(x)) at the end of the M-file to make
y have the same shape as x. However, even if the shape of the output array is
not important, it is generally best to predefine an array of the appropriate size
before computing it element-by-element in a loop, because the loop will then
run faster.

Next, consider the following modification of the M-file above.

function y = f(x)
if x ˜= 0

y = sin(x)./x;
return

end
y = ones(size(x));
for n = 1:prod(size(x))

if x(n) ˜= 0
y(n) = sin(x(n))/x(n);

end
end

Above the loop we added a block of four lines whose purpose is to make the M-file
run faster if all the elements of the input x are non-zero. Because MATLAB processes
vectors more efficiently than loops, the new M-file runs several times faster if x has
a large number of elements (all non-zero). Here is how the new block of four lines
works. The first if statement will be true provided that all the elements of x are non-
zero. In this case, we define the output y using MATLAB’s vector operations, which
are generally much more efficient than running a loop. Then we use the command
return to stop execution of the M-file without running any further commands. (The
use of return here is a matter of style; we could instead have indented all of the
remaining commands and put them between else and end statements.) If, on the
other hand, x has some zero elements, then the if statement is false and the M-file
skips ahead to the commands after the next end statement.
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Often you can avoid the use of loops and branching commands entirely by using
logical arrays. Here is another function M-file that performs the same task as in the
previous examples. It has the advantage of being more concise and more efficient to
run than the previous M-files, since it avoids a loop in all cases.

function y = f(x)
y = ones(size(x));
n = (x ˜= 0);
y(n) = sin(x(n))./x(n);

Here n is a logical array of the same size as x with a 1 in each place where x has a
non-zero element and zeros elsewhere. Thus the line that defines y(n) only redefines
the elements of y corresponding to non-zero values of x, and leaves the other elements
equal to 1.

Branching with switch

The other main branching command is switch. It allows you to branch among
several cases just as easily as among two cases, though the cases must be described
through equalities rather than inequalities. Here is a simple example, which distin-
guishes between three cases for the input.

function y = count(x)
switch x
case 1

y = ’one’;
case 2

y = ’two’;
otherwise

y = ’many’;
end

Here the switch statement evaluates the input x and then execution of the M-file
skips to whichever case statement has the same value. Thus, if the input x equals
1, then the output y is set to be the string ’one’, whereas if x is 2, then y is set
to ’two’. In each case, once MATLAB encounters another case statement or an
otherwise statement, it skips to the end statement, so that at most one case is
executed. If no match is found among the case statements, then MATLAB skips to
the (optional) otherwise statement, or else to the end statement. In the example
above, an otherwise statement is present, so the output is ’many’ if the input is
not 1 or 2.

Unlike if, the command switch does not allow vector expressions, but it does
allow strings. Type help switch to see an example using strings. This feature can
be useful if you want to design a function M-file that uses a string input argument to
select among several different variants of a program you write.
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✓ Though strings cannot be compared with relational operators such as == (un-
less they happen to have the same length), you can compare strings in an if
or elseif statement by using either strcmp or isequal. The latter com-
mand works more generally when comparing arrays that may have different
sizes or even different data types.

More about Loops

In Chapter 3 we introduced the command for, which begins a loop – a sequence of
commands to be executed multiple times. When you use for, you effectively specify
the number of times to run the loop in advance (though this number may depend for
instance on the input to a function M-file). Sometimes you may want to keep running
the commands in a loop until a certain condition is met, without deciding in advance
on the number of iterations. In MATLAB, the command that allows you to do so is
while.

➯ Using while, one can easily end up accidentally creating an “infinite
loop,” one that will keep running indefinitely because the condition you
set is never met. Remember that you can generally interrupt the execu-
tion of such a loop by typing CTRL+C; otherwise, you may have to shut
down MATLAB.

Open-Ended Loops

Here is a simple example of a script M-file that uses while to numerically sum the
infinite series 1/14 + 1/24 + 1/34 + · · · , stopping only when the terms become so
small (compared with the machine precision) that the numerical sum stops changing.

n = 1;
oldsum = -1;
newsum = 0;
while newsum > oldsum

oldsum = newsum;
newsum = newsum + nˆ(-4);
n = n + 1;

end
newsum

Here we initialize newsum to 0 and n to 1, and in the loop we successively add
nˆ(-4) to newsum, add 1 to n, and repeat. The purpose of the variable oldsum is
to keep track of how much newsum changes from one iteration to the next. Each time
MATLAB reaches the end of the loop, it starts over again at the while statement.
If newsum exceeds oldsum, the expression in the while statement is true, and the
loop is executed again. But the first time the expression is false, which will happen
when newsum and oldsum are equal, MATLAB skips to the end statement and ex-
ecutes the next line, which displays the final value of newsum (the result is 1.0823
to 5 significant digits). The initial value of -1 that we gave to oldsum is somewhat
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arbitrary, but it must be negative so that the first time the while statement is exe-
cuted, the expression therein is true; if we set oldsum to 0 initially, then MATLAB
would skip to the end statement without ever running the commands in the loop.

✓ Even though you can construct an M-file like the one above without deciding
exactly how many times to run the loop, it may be useful to consider roughly
how many times it will need to run. Since the floating-point computations on
most computers are accurate to about 16 decimal digits, the loop above should
run until nˆ(-4) is about 10ˆ(-16); that is, until n is about 10ˆ4. Thus
the computation will take very little time on most computers. However, if the
exponent were 2, not 4, the computation would take about 10ˆ8 operations,
which would take a long time on most (current) computers – long enough
to make it wiser for you to find a more efficient way to sum the series, for
example using symsum if you have the Symbolic Math Toolbox!

☞ Though we have classified it here as a looping command, while also has
features of a branching command. Indeed, the types of expressions allowed
and the method of evaluation for a while statement are exactly the same
as for an if statement. See the section Logical Expressions above for a
discussion of the possible expressions you can put in a while statement.

Breaking from a Loop

Sometimes you may want MATLAB to jump out of a for loop prematurely, for ex-
ample if a certain condition is met. Or, in a while loop, there may be an auxiliary
condition that you want to check in addition to the main condition in the while state-
ment. Inside either type of loop, you can use the command break to tell MATLAB
to stop running the loop and skip to the next line after the end of the loop. The com-
mand break is generally used in conjunction with an if statement. The following
script M-file computes the same sum as in the previous example, except that it places
an explicit upper limit on the number of iterations.

newsum = 0;
for n = 1:100000

oldsum = newsum;
newsum = newsum + nˆ(-4);
if newsum == oldsum

break
end

end
newsum

In this example, the loop stops after n reaches 100000 or when the variable newsum
stops changing, whichever comes first. Notice that break ignores the end statement
associated with if and skips ahead past the nearest end statement associated with a
loop command, in this case for.
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Other Programming Commands

Here we describe a few more advanced programming commands and techniques.

Subfunctions

In addition to appearing on the first line of a function M-file, the command function
can be used later in the M-file to define an auxiliary function, or subfunction, which
can be used anywhere within the M-file but will not be accessible directly from the
command line. For example, the following M-file sums the cube roots of a vector x
of real numbers:

function y = sumcuberoots(x)
y = sum(cuberoot(x));

% ---- Subfunction starts here.
function z = cuberoot(x)
z = sign(x).*abs(x).ˆ(1/3);

Here the subfunction cuberoot takes the cube root of x element-by-element. You
can use subfunctions only in a function M-file, not in a script M-file. For examples of
the use of subfunctions, you can examine many of MATLAB’s built-in function M-
files. For example, typing type ezplot will display three different subfunctions.

Cell and Structure Arrays

In Chapter 4, we discussed several data types, and earlier in this chapter we introduced
another type, namely logical arrays. Two other data types that are useful in MATLAB
programming are cell arrays and structure arrays. Cell arrays are essentially “arrays
of arrays”; the elements of a cell array can have different data types and different
sizes. The command cell creates an empty cell array, but the more common way to
create a cell array is with curly braces:

>> ca = {1, [2 3], ’four’}

ca =
[1] [1x2 double] ’four’

Use curly braces also to access a particular element of a cell array; for example, type
ca{2} to display the second element of ca.

Structure arrays are similar to structures in programming languages like C; they
allow you to name the elements of the array rather than number them. Like cell arrays,
the elements can have different types and sizes. One way to create a structure array is
with the command struct:

>> sa = struct(’data’, [1 4 9 16 25], ’description’, ...
’perfect squares’)

sa =
data: [1 4 9 16 25]

description: ’perfect squares’
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To access a particular element, or “field,” type the name of the array and the name
of the field with a period in between; for example, sa.data. You can also use the
same syntax to create and add fields to a structure array. Another way to define sa is
with the following commands:

>> sa = struct;
>> sa.data = [1 4 9 16 25];
>> sa.description = ’perfect squares’

The first command defines an empty structure, and the subsequent commands add
fields to it.

✓ MATLAB also has signed and unsigned integer data types; see the online
help for int32 and uint32, for example.

Commands for Parsing Input and Output

You may have noticed that many MATLAB functions allow you to vary the type
and/or the number of arguments you give as input to the function. You can use the
commands nargin, nargout, varargin, and varargout in your own M-files
to handle variable numbers of input and/or output arguments, whereas to treat differ-
ent types of input arguments differently you can use commands such as isnumeric,
ischar, etc.

When a function M-file is executed, the functions nargin and nargout report,
respectively, the number of input and output arguments that were specified on the
command line. To illustrate the use of nargin, consider the following M-file add.m
that adds either two or three inputs.

function s = add(x, y, z)
if nargin < 2

error(’At least two input arguments are required.’)
end
if nargin == 2

s = x + y;
else

s = x + y + z;
end

First the M-file checks to see whether fewer than two input arguments were given,
and if so it prints an error message and quits. (See the next section for more about
error and related commands.) MATLAB automatically checks to see whether there
are more arguments than specified on the first line of the M-file, so there is no need
to do so within the M-file. If the M-file reaches the second if statement in the M-file
above, we know that there are either two or three input arguments; the if statement
selects the proper course of action in either case. If you type, for instance, add(4,5)
at the command line, then, within the M-file, x is set to 4, y is set to 5, and z is left
undefined; thus it is important to use nargin to avoid referring to z in cases where
it is undefined.
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To allow a greater number of possible inputs to add.m, we could add additional
arguments on the first line of the M-file and add more cases for nargin. A better
way to do this is to use the specially named input argument varargin.

function s = add(varargin)
s = sum([varargin{:}]);

In this example, all of the input arguments are assigned to the cell array varargin.
The expression varargin{:} forms a comma-separated list of the input arguments.
In the example above, we convert this list to a vector by enclosing it in square brackets,
forming suitable input for sum.

The sample M-files above assume that their input arguments are numerical, and
will attempt to add them even if they are not. This may be desirable in some cases; for
instance, both M-files above will correctly add a mixture of numerical and symbolic
inputs. However, if some of the input arguments are strings, the result will be either
an essentially meaningless numerical answer or an error message that may be difficult
to decipher. MATLAB has a number of test functions that you can use to make an
M-file treat different types of input arguments differently – either to perform different
calculations, or to produce a helpful error message if an input is of an unexpected
type. For a list of some of these test functions, look up the commands beginning with
is in the Programming Commands section of the Glossary.

As an example, here we use isnumeric in the M-file add.m to print an error
message if any of the inputs are not numerical.

function s = add(varargin)
if ˜isnumeric([varargin{:}])

error(’Inputs must be floating point numbers.’)
end
s = sum([varargin{:}]);

When a function M-file allows multiple output arguments, then, if fewer output
arguments are specified when the function is called, the remaining outputs are sim-
ply not assigned. Recall that if no output arguments are explicitly specified on the
command line, then a single output is returned and assigned to the variable ans. For
example, consider the following M-file rectangular.m that changes coordinates
from polar to rectangular.

function [x, y] = rectangular(r, theta)
x = r.*cos(theta);
y = r.*sin(theta);

Typing [x, y] = rectangular(2, 1) at the command line then stores the
rectangular coordinates of the point with polar coordinates (2, 1) in the variables x
and y. But if you type only rectangular(2, 1), then the answer will be just the
x-coordinate. The following modification to rectangular.m adjusts the output in
this case to be a complex number x + iy containing both coordinates.

function [x, y] = rectangular(r, theta)
x = r.*cos(theta);
y = r.*sin(theta);
if nargout < 2
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x = x + i*y;
end

See the online help for varargout and the functions described above for additional
information and examples.

Evaluation and Function Handles

The command eval allows you to run a command that is stored in a string as if you
had typed the string on the command line. For example, typing eval(’cos(1)’)
will produce the same result as typing cos(1). If the entire command you want to
run is contained in a string str, then you can execute it with eval(str). Generally
eval is used in an M-file to define a variable or run a command whose name depends
on an input or loop variable; type help eval for examples.

Another useful feature of eval is that, with two input strings, it will try the first
command and, if that produces an error, try the second command instead. This form
of eval allows some flexibility in the number of inputs to an anonymous function.
The command

>> add = @(x,y,z) eval(’x + y + z’, ’x + y’)

creates an anonymous function that adds either two or three input arguments, like
add.m above.

✓ You can also create anonymous functions with multiple outputs using the
command deal. For example, typing

>> rectangular = @(r,theta) deal(r.*cos(theta), ...
r.*sin(theta))

yields a function that converts a pair of polar coordinates into a pair of rect-
angular coordinates, like rectangular.m above. The only difference is
that this function will yield an error message if you specify only one output
argument. To allow for either one or two output arguments, you can use the
two-input form of eval as in the example above; we leave the details to you
as an exercise.

In Chapter 4 we mentioned function handles, which were introduced in MAT-
LAB 6. Function handles are now the preferred way to specify a function as input to
another function (like fzero or quadl, for example), though for backward compati-
bility many such functions also allow you to input a function name as a string. Starting
in MATLAB 7, function handles also make it simple for you to write function M-files
that input another function. For example, the following M-file iterate.m inputs a
function handle (or an inline function) and an initial value and iterates the function a
specified number of times.

function final = iterate(func, init, num)
final = init;
for k = 1:num

final = func(final);
end
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Recall that putting the “at sign” @ before the name of a built-in function or func-
tion M-file makes a handle for that function. Thus, typing iterate(@cos, 1,
2) yields the numerical value of cos(cos(1)), while iterate(@cos, 1, 100)
yields an approximation to the real number x for which cos(x) = x. (Think about
it!) Remember also that an anonymous function is a function handle. So, typing
iterate(@(x) 3.9*x*(1 - x), 0.5, 100) iterates the “logistic map”
f(x) = 3.9x(1 − x) one hundred times starting at x = 0.5.

☞ See Population Dynamics in the Applications chapter for more about the lo-
gistic map.

✓ In MATLAB 6 and earlier versions, one must use the command feval
in function M-files like iterate.m. Specifically, replace the command
final = func(final) in the M-file with final = feval(func,
final). When using feval, the input function can be specified as a string,
as well as a function handle or inline function. For example, typing either
feval(’atan2’, 1, 0) or feval(@atan2, 1, 0) is equivalent
to typing atan2(1, 0).

Another feature of anonymous functions that is useful in programming is that their
definition can include a parameter stored in a variable. (This is not the case for inline
functions.) Consider the following commands:

>> c = 3; f = @(x) c*x; f(2)

ans =
6

The value of c at the time f was defined is incorporated into f, and any subsequent
changes to c do not affect f:

>> c = 5; f(2)

ans =
6

This feature can be used in an M-file to define an anonymous function that depends
on an input parameter. Another use is to vary a parameter in a loop. For example the
loop

>> for c = 1:3
ezplot(@(x) sin(c*x), [0 2*pi])

end

will reproduce the curves in Figure 3.1.

User Input and Screen Output

In the previous section we used error to print a message to the screen and then
terminate execution of an M-file. You can also print messages to the screen with-
out stopping execution of an M-file by using disp or warning. Not surprisingly,
warning is intended to be used for warning messages, when the M-file detects a
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problem that might affect the validity of its result but is not necessarily serious. You
can suppress warning messages, either from the command prompt or within an M-
file, with the command warning off. There are several other options for handling
warning messages; type help warning for details.

In Chapter 4 we used disp to display the output of a command without printing
the “ans =” line. You can also use disp to display informational messages on the
screen while an M-file is running, or to combine numerical output with a message on
the same line. For example, the commands

x = 2 + 2; disp([’The answer is ’ num2str(x) ’.’])

will set x equal to 4 and then print The answer is 4.
MATLAB also has several commands that solicit input from the user running an

M-file. At the end of Chapter 3 we discussed three of them: pause, keyboard,
and input. Briefly, pause simply pauses execution of an M-file until the user hits
a key, while keyboard both pauses and gives the user a prompt that can be used
like the regular command-line interface before typing return to continue executing
the M-file. Lastly, input displays a message and allows the user to enter input
for the program on a single line. For example, in a program that makes successive
approximations to an answer until some accuracy goal is met, you could add the
following lines to be executed after a large number of steps have been taken.

answer = input([’Algorithm is converging slowly; ’, ...
’continue (yes/no)? ’], ’s’);

if ˜isequal(answer, ’yes’)
return

end

Here the second argument ’s’ to input directs MATLAB not to evaluate the answer
typed by the user, just to assign it as a character string to the variable answer. We use
isequal to compare the answer to the string ’yes’ because == can be used only to
compare arrays (in this case strings) of the same length. In this case we decided that
if the user types anything but the full word yes, the M-file should terminate. Other
approaches would be to compare only the first letter answer(1) with ’y’, to stop
only if the answer is ’no’, etc.

If a figure window is open, you can use ginput to get the coordinates of a point
that the user selects with the mouse. As an example, the following M-file prints an
“X” where the user clicks.

function xmarksthespot
if isempty(get(0, ’CurrentFigure’))

error(’No current figure.’)
end
flag = ˜ishold;
if flag

hold on
end
disp(’Click on the point where you want to plot an X.’)
[x, y] = ginput(1);
plot(x, y, ’xk’)
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if flag
hold off

end

First the M-file checks to see whether there is a current figure window. If so, it
proceeds to set the variable flag to 1 if hold off is in effect and 0 if hold
on is in effect. The reason for this is that we need to have hold on in effect to plot
an “X” without erasing the figure, but afterward we want to restore the figure window
to whichever state it was in before the M-file was executed. The M-file then displays
a message telling the user what to do, gets the coordinates of the point selected with
ginput(1), and plots a black “X” at those coordinates. The argument 1 to ginput
means to get the coordinates of a single point; using ginput with no input argument
would collect coordinates of several points, stopping only when the user presses the
ENTER key.

☞ In Chapter 9 we describe how to create a Graphical User Interface (GUI)
within MATLAB to allow more sophisticated user interaction.

Debugging

In Chapter 3 we discussed some rudimentary debugging procedures. One suggestion
was to insert the command keyboard into an M-file, for instance right before the
line where an error occurs, so that you can examine the Workspace of the M-file at that
point in its execution. A more effective and flexible way to do this kind of debugging
is to use dbstop and related commands. With dbstop you can set a breakpoint in
an M-file in a number of ways; for example, at a specific line number, or whenever an
error occurs. Type help dbstop for a list of available options.

When a breakpoint is reached, a prompt beginning with the letter K will appear
in the Command Window, just as if keyboard were inserted into the M-file at the
breakpoint. In addition, the location of the breakpoint is highlighted with an arrow
in the Editor/Debugger (which is opened automatically if you were not already edit-
ing the M-file). At this point you can examine in the Command Window the vari-
ables used in the M-file, set another breakpoint with dbstop, clear breakpoints with
dbclear, etc. If you are ready to continue running the M-file, type dbcont to con-
tinue or dbstep to step through the file line-by-line. You can also stop execution of
the M-file and return immediately to the usual command prompt with dbquit.

☞ You can also perform all the command-line functions that we described in this
section with the mouse and/or keyboard shortcuts in the Editor/Debugger.
See the section Debugging Techniques in Chapter 11 for more about debug-
ging commands and features of the Editor/Debugger.

✰ Interacting with the Operating System

☞ This section is somewhat advanced. On a first reading, you might want to
skip ahead to the next chapter.
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Calling External Programs

MATLAB allows you to run other programs on your computer from its command line.
For example, you can conveniently enter UNIX or DOS file-manipulation commands
directly in the Command Window rather than opening a separate window. Or, you
may want to use MATLAB to graph the output of a program written in a language
like Fortran or C. Finally, for large-scale computations, you can combine routines
written in another programming language with routines you write in MATLAB.

The simplest way to run an external program is to type an exclamation point at
the beginning of a line, followed by the operating-system command you want to run.
For example, typing !dir on a Windows system or !ls -l on a UNIX system
will generate a more detailed listing of the files in the current working directory than
the MATLAB command dir. In Chapter 3 we described dir and other MATLAB
commands like cd, delete, pwd, and type that mimic similar commands from the
UNIX or DOS prompt. However, for certain operations (such as renaming a file) you
may need to run an appropriate command from the operating system.

✓ If you use the operating-system interface in an M-file that you want to run on
either a Windows or UNIX system, you should use the test functions ispc
and/or isunix to set off the appropriate commands for each type of sys-
tem, e.g., if isunix; ...; else; ...; end. If you need to dis-
tinguish between different versions of UNIX (Linux, Solaris, etc.), you can
use computer instead of isunix.

The output from an operating-system command preceded by ! can only be dis-
played to the screen. To assign the output of an operating-system command to a
variable, you must use dos or unix. Though each is documented to work only
for its respective operating system, in current versions of MATLAB they work inter-
changeably. For example, if you type [stat, data] = dos(’myprog 0.5
1000’), the program myprog will be run with command-line arguments 0.5 and
1000 and its “standard output” (which would normally appear on the screen) will be
saved as a string in the variable data. (The variable stat will contain the exit status
of the program you run, normally 0 if the program runs without error.) If the output
of your program consists only of numbers, then str2num(data) will yield a row
vector containing those numbers. You can also use sscanf to extract numbers from
the string data; type help sscanf for details.

➯ A program you run with !, dos, or unix must be in the current direc-
tory or elsewhere in the path your system searches for executable files;
the MATLAB path will not be searched.

✓ MATLAB also allows for more sophisticated interfaces with C, Fortran, and
Java programs, but these are beyond the scope of this book. See the section
on External Interfaces in the Help Browser for details.
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File Input and Output

In Chapter 3 we discussed how to use save and load to transfer variables between
the Workspace and a disk file. By default the variables are written and read in MAT-
LAB’s own binary format, which is signified by the file extension .mat.

➯ MATLAB 7 uses a new binary format that cannot be read by earlier
versions of MATLAB. To save in a backward-compatible format, type
-v6 after the file name in the save command.

You can also read and write text files, which can be useful for sharing data with
other programs. With save, type -ascii after the file name to save numbers as text
rounded to 8 digits, or -ascii -double for 16-digit accuracy. With load the data
is assumed to be in text format if the file name does not end in .mat. This provides
an alternative to importing data with dos or unix in case you have previously run
an external program and saved the results in a file.

✓ Beginning with version 6, MATLAB 6 also offers an interactive tool called
the Import Wizard to read data from files in different formats; to start it type
uiimport (optionally followed by a file name), select File:Import Data...,
or right-click on the file name in the Current Directory Browser and select
Import Data.... Using uiimport also allows you to import data that you
have cut or copied to the system clipboard.

For more control over file input and output – for example to annotate numerical
output with text – you can use fopen, fprintf, and related commands. Type
help iofun for an overview of input and output functions.
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Publishing and M-Books

MATLAB is exceptionally strong in linear algebra, numerical methods, and graphical
interpretation of data. It is easily programmed and relatively easy to learn to use.
Hence, it has proven invaluable to engineers and scientists who rely on the scientific
techniques and methods at which MATLAB excels. Very often the individuals and
groups that so employ MATLAB are primarily interested in the numbers and graphs
that emerge from MATLAB commands, processes and programs. Therefore, it is
enough for them to work in a MATLAB Command Window, from which they can
easily print or export their desired output.

However, other practitioners of mathematical software find themselves with two
additional requirements. First, they need a mathematical software package embed-
ded in an interactive environment, in which it is easy to make changes and regenerate
results. Second, they need a higher-level presentation mode, which integrates compu-
tation and graphics with text, uses different formats for input and output, and commu-
nicates effortlessly with other software applications. These additional requirements
can be accomplished using either cells and the publish command, or else the M-
book interface, both of which were briefly described in Chapter 3. The present chapter
goes into more detail and discusses some of the fine points of these methods.

Fine Points of Publishing

As we mentioned Chapter 3, the simplest way to produce a finished presentation with
MATLAB is to prepare your work in a script M-file and then publish the result. To
do this effectively, you should first make sure that you have “enabled cell mode” in
the Editor/Debugger, so that the cell structure of your M-file is readily visible. If you
are going to post your results on a web page, or even just print them out for viewing,
publishing to HTML (which stands for “hypertext markup language,” the formatting
language for web pages) works best. MATLAB has a built-in web browser (which
can be accessed directly with the command web) that will display your published
M-file as soon as MATLAB has finishing compiling it. You may then either print the
result directly from the browser window or else copy the published M-file to your web
server. Note that MATLAB stores the html code of the published M-file, along with
all the graphics produced by the M-file (usually in png format), in a folder named
html, so, if you copy the published file, be sure to copy all the graphics files that
accompany it. If you are using MATLAB to produce slides for a presentation, it is
better to publish to a PowerPoint file (with the file extension .ppt) instead.

To produce a nicely formatted published M-file, recall from the section Publish-
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ing an M-file in Chapter 3 that all the output from a single cell will appear together,
following the MATLAB commands from that cell. Thus, if you want to intersperse
comments and calculations, you need to break your work up into multiple cells. Com-
ments will be formatted only if they appear at the beginning of a cell, so you need to
arrange your work in the following order: new cell (i.e., %% at the beginning of a line,
whether or not followed by space and a cell title), then comments, then MATLAB
code. As a simple example, the code that produced the published solution to Problem
5(e) in Practice Set B reads as follows:

%% (e)
limit(sin(1/x), x, 0, ’right’)

%%
% This means that every real number in the interval
% between -1 and +1 is a "limit point" of sin(1/x)
% as x tends to zero. You can see why if you plot
% sin(1/x) on the interval (0, 1].
ezplot(sin(1/x), [0 1])

Sometimes you may need special formatting beyond what appears in the above
example. For example, you might want your published M-file to include an equa-
tion involving mathematical symbols that are not easy to imitate in regular text. In
this case, you can typeset the equation in TEX and insert it using Cell:Insert Text
Markup:TeX Equation from the menu items at the top of the Editor/Debugger. If
you are not familiar with TEX, a few things to keep in mind are that you create Greek
letters by typing the name of the letter preceded by a backslash (\), and create sub-
scripts and superscripts with underscores (_) and carets (ˆ). Grouping is done with
braces ({ }). Mathematical symbols have names (usually self-explanatory) begin-
ning with a backslash (\), such as \times for a multiplication sign and \sum for a
summation sign. Here is a simple example of an M-file aboutbessel.m, contain-
ing formatted text, suitable for publishing:

%% Sample M-File About Bessel Functions
% The *Bessel function* J_n(x) can be defined in many ways:
%
% * For example, for |n| an integer, J_n(x) can be defined
% by the formal series expansion
%
% $$ eˆ{z(t-1/t)/2} = \sum_{n=-\infty}ˆ\infty tˆn J_n(z). $$
%
% * Secondly, J_n(x) can be defined as the solution of
%
% $$ xˆ2y’’(x) + xy’(x) + (xˆ2 - nˆ2)y(x)=0 $$
%
% that is non-singular at x = 0 and satisfies a
% normalization condition.
%%
% Here is a graph of some of the Bessel functions:
x = 0:0.05:10;
for n = 0:5
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plot(x, besselj(n, x)), hold on
end, hold off

In this example, the lines beginning with % * produce a bulleted list, the vertical
bars around the letter n in the third line are an instruction to MATLAB to set this
word in monospaced, rather than Roman, type, and the asterisks around the phrase
“Bessel function” are an instruction to set these words in boldface. If you publish this
example to LATEX, the TEX code for the equations will be incorporated verbatim. If
you publish to html, MATLAB typesets each equation in TEX, stores the result as a
graphics file, and then pastes the graphics file into the web page.

As we have hinted before, the command publish works only with script M-
files, not with function M-files. If you are doing a calculation that requires a function
M-file and you want to publish it, you can call the function M-file from a publishable
script M-file, and include in the latter the line

type <function M-file>

where <function M-file> should be replaced with the name of the M-file. This
will ensure that the text of the function M-file appears in your published output. You
can see examples of this trick in the published M-file on Numerical Solution of the
Heat Equation in Chapter 10.

One problem you may encounter occurs when you publish an M-file that has a
mistake in it, or at least that contains code that produces a MATLAB error message.
(For an example, see the solution in Solutions to the Practice Sets to Problem 6(c) in
Practice Set B.) You will discover that, ordinarily, publish terminates as soon as it
encounters an error, and does not evaluate the rest of the M-file. A way around this
is to publish with “options,” by creating a structure with the options you require.
(See Cell and Structure Arrays in Chapter 6.) For example, our published solution to
the M-file for Practice Set B was produced with the following MATLAB code:

>> options = struct;
>> options.format = ’latex’;
>> options.stopOnError = logical(false);
>> publish(’ExBsols’, options)

Another fine point is that you may find that the default size for graphics or text
in a published M-file is too small or too large for your purposes. You can change
the default picture size by going (in the Desktop toolbar) to File:Preferences...:Edi-
tor/Debugger:Publishing Images and can change the default style sheet by going to
File:Preferences...:Editor/Debugger:Publishing.

We conclude this section with one more fine point about what happens when you
publish to LATEX. If you do this, the output LATEX code and graphics files (this time in
eps format) are stored in your html folder. You can immediately run latex on the
tex file, or else you can paste it into another LATEX file. If you do the latter, you have
to remember to remove the lines

\documentclass{article}
\begin{document}

at the beginning and
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\end{document}

at the end, and you should move the lines

\usepackage{graphicx}
\usepackage{color}

to the preamble of the document into which you are pasting the code (unless they are
already present there, in which case you should delete the extra copies).

More on M-Books

The M-book interface allows a Windows user to operate MATLAB from a special
Microsoft Word document instead of from a MATLAB Command Window. In this
mode, the user should think of Word as running in the foreground and MATLAB as
running in the background as an Automation Server. Lines that you enter into your
Word document are passed to the MATLAB server in the background and executed
there, whereupon the output is returned to Word, and then both input and output are
automatically formatted. One obtains a living document in the sense that one can
edit the document as one normally edits a word-processing document. So one can
revisit input lines that need adjustment, change them, and re-execute on the spot –
after which the old outdated output is automatically overwritten with new output. The
graphical output that results from MATLAB graphics commands appears in the Word
document, immediately after the commands that generated it. Erroneous input and
output are easily expunged, enhanced formatting can be done in a way that is no more
complicated than what one does in a word processor, and in the end the result of
your MATLAB session can be an attractive, easily readable, and highly informative
document. Of course, one can “cheat” by editing one’s output – we shall discuss that
and other pitfalls and strengths of M-books in what follows.

☞ We are assuming here that M-books have been enabled on your computer. If
not, or if you get an error message about a missing file m-book.dot, go
back to the section on M-Books in Chapter 3 for instructions on how to fix
this problem.

The most common way to start up the M-book interface is to type notebook at
the Command Window prompt, or, if you want to open an existing M-book, to type

>> notebook <M-book>

with <M-book> replaced by the name of the M-book, ordinarily ending in .doc.

✓ An alternate, and on some systems (especially networked systems) a prefer-
able, launch method is first to open a previously saved M-book – either di-
rectly through File:Open... in Word, or by double-clicking on the file name
in Windows Explorer. Word recognizes that the document is an M-book and
it automatically launches MATLAB if it is not already running. A word of
caution: if you have more than one version of MATLAB installed, Word will
launch the version you installed last. To override this, you can open the MAT-
LAB version you want before you open the M-book.
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You can now type into the M-book in the usual way. The MATLAB automa-
tion server is activated only if you do one of two things: either access the items in
the Notebook menu, or press the key combination CTRL+ENTER. You may note
that your commands take a little longer to evaluate than they would inside a normal
MATLAB Command Window. This is not surprising considering the amount of in-
formation that is passing back and forth between MATLAB and Word.

✓ If you want to start a fresh M-book, click on File:New M-book in the Menu
Bar, or File:New..., then click on m-book.dot.

✓ Note that the Help item on the menu bar is Word help, not MATLAB help.
If you want to invoke MATLAB help, then either type help or doc (with
CTRL+ENTER of course), or bring the MATLAB Command Window to the
foreground (see below) and use MATLAB help in the usual fashion.

The Notebook Menu Items

Next let’s examine the items in the Notebook menu. First comes Define Input Cell.
If you put your cursor on any line and select Define Input Cell, then that line will be-
come an input line. To evaluate it, you must press CTRL+ENTER or choose Evaluate
Cell from the Notebook menu. The advantage to this method is that you can create
an input cell containing more than one line. For example, type

syms x y
factor(xˆ2 - yˆ2)

then select both lines (by clicking and dragging over them) and choose Define Input
Cell. Pressing CTRL+ENTER will then cause both lines to be evaluated. You can rec-
ognize that both lines are incorporated into one input cell by looking at the brackets,
or Cell Markers. The menu item Hide Cell Markers will cause the Cell Markers to
disappear; in fact that menu item is a toggle switch that turns the Markers on and off.
If you have several input cells, you can convert them into one input cell by selecting
them and choosing Group Cells. You can break them apart by choosing Ungroup
Cells. If you click in an input cell and choose Undefine Cells, that cell ceases to be an
input cell; its formatting reverts to the default Word format, as does the corresponding
output cell. If you “undefine” an output cell, it loses its format, but the corresponding
input cell remains unchanged.

If you select some portion of your M-book (e.g., the entire M-book by using
Edit:Select All) and then choose Purge Selected Output Cells, all output cells in
the selection will be deleted. This is particularly useful if you wish to change some
data on which the output in your selection depends, and then re-evaluate the entire
selection by choosing Evaluate Cell. You can re-evaluate the entire M-book at any
time by choosing Evaluate M-book. If your M-book contains a loop, you can eval-
uate it by selecting it and choosing Evaluate Loop, or for that matter Evaluate Cell,
provided that the entire loop is inside a single input cell.

It is often handy to purge all output from an M-book before saving, to economize
on storage space or on time upon reopening, especially if there are complicated graphs
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in the document. If there are any input cells that you want to automatically evaluate
upon opening of the M-book, select them and click on Define AutoInit Cell. The
color of the text in those cells will change from green to navy blue. If you want to
separate out a series of commands, say for repeated evaluation, then select the cells
and click on Define Calc Zone. The commands selected will be encased in a Word
section (with section breaks before and after it). If you click in the section and select
Evaluate Calc Zone from the Notebook menu, the commands in only that zone will
be (re)evaluated.

The last two buttons are also useful. The button Bring MATLAB to Front does
exactly that; it reveals the MATLAB Command Window that has been hiding behind
the M-book. You may want to enter some commands directly into the Command
Window and not have them in your M-book – for example, a help entry. Finally,
the last button, Notebook Options... brings up a panel in which you can do some
customization of your M-book: set the numerical format, establish the size of graphics
figures, etc.

M-Book Graphics

All MATLAB commands that generate graphics work in M-books. The figure pro-
duced by a graphics command appears immediately below that command. However,
if you refine your graphics in an M-book, you will find that it is more desirable to
modify the input cells that generated them, rather than producing more pictures by
repeating the command with new options. So when adding things like xlabel,
ylabel, legend, title, etc., it is usually best just to add them to the graphics
input cell and re-evaluate.

In most cases, it is desirable to have figures appear directly in the M-book, using
the default option Notebook:Notebook Options...:Embed Figures in M-Book, and
you might not care whether they do or do not appear in a separate figure window.
But sometimes you might want to use a figure window along with an M-book, for
example to rotate a plot with the mouse. If you type figure from the Command
Window to open a figure window, then subsequent graphics from the M-book will
appear simultaneously in the figure window and in the M-book itself.

Finally, we note the button Toggle Graph Output for Cell, the only button on the
Notebook menu not previously described. If you select a cell containing a graphics
command and click on this button, no graphical output will result from the evaluation
of this command. This can be useful when used in conjunction with hold on if you
want to produce a single graphic using multiple command lines.

More Hints for Effective Use of M-Books

You may want to run script or function M-files in an M-book. You must still make
sure that these M-files are located in your MATLAB path, just as you would in a
Command Window. But, assuming that this is the case, M-files are executed in an
M-book exactly as in a Command Window. You invoke them simply by typing their
names and pressing CTRL+ENTER. The outputs they generate, both intermediate
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and final, are determined as before. In particular, semicolons at ends of lines are
important. One thing that does not work so well is the command more. A command
as simple as

more on; help print

may confuse Word and cause it to hang. Thus you may want to bring MATLAB to
the foreground and enter your help requests in the Command Window.

Another standard MATLAB feature that does not work so well in M-books is the
... construct for continuing a long command entry on a second line. Word auto-
matically converts three dots into a single special ellipsis character and so confuses
MATLAB. There are two ways around this difficulty. Either do not use ellipses; rather
simply continue typing and allow Word to wrap as usual – the command will be inter-
preted properly when passed to MATLAB. Or, turn off the “Auto Correct” feature of
Word that converts the three dots into an ellipsis. This is most easily done by typing
CTRL+Z after the three dots. Alternatively, open Tools:Auto Correct... and change
the settings that appear there.

The ellipsis difficulty described in the last section is just one of many of its type.
The various kinds of automatic formatting that Word carries out can truly confuse
MATLAB. Several such instances that we find particularly annoying are as follows:
fractions (1/2 is converted to a single character 1/2 representing one-half); the char-
acter combination “:)”, a construct often used when specifying the rows of a matrix,
which Word converts to a “smiley face” �

..©; and various dashes that wreak havoc with
MATLAB’s attempts to interpret an ordinary hyphen as a minus sign. Examine these
in Tools:Auto Correct... and, if you use M-books regularly, consider turning them
off.

A more insidious problem is the following. If you cut and paste character strings
into an input cell, the characters in the original font may be converted into something
you don’t anticipate in the Courier input cell. Mysterious and unfathomable error
messages upon execution are a tip-off to this problem. In general, you should not
copy cells for evaluation unless it is from a cell that has already evaluated successfully
– it is safer to type in the line anew.

Finally, we have seen instances in which a cell, for no discernible reason, fails to
evaluate. If this happens, try pressing CTRL+ENTER again. If all else fails, your only
choice may be to delete and retype the cell.





Chapter 8

Simulink

In this chapter we describe Simulink, a MATLAB accessory for simulating dy-
namical processes and engineering systems. This brief introduction, together with the
online documentation, should be enough to get you started using Simulink.

A Simple Differential Equation

If you want to learn about Simulink in depth, you can read the massive PDF document
available at

www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_using.pdf

Here we give a brief introduction for the user who wants to get going with Simulink
quickly. You start Simulink by double-clicking on Simulink in the Launch Pad, by

clicking on the Simulink button on the MATLAB Desktop tool bar, or simply
by typing simulink in the Command Window. This opens the Simulink library
window, which is shown for UNIX systems in Figure 8.1. On Windows systems, you
see instead the Simulink Library Browser, shown in Figure 8.2.

Figure 8.1. The Simulink Library.

To begin to use Simulink, click New:Model from the File menu. This opens a
blank model window. You create a Simulink model by copying units, called blocks,
from the various Simulink libraries into the model window. We will explain how to
use this procedure to model the homogeneous linear ordinary differential equation
(ODE) u′′ + 2u′ + 5u = 0, which represents a damped harmonic oscillator.

111



112 Chapter 8. Simulink

Figure 8.2. The Simulink Library Browser on a PC.

First we have to figure out how to represent the equation in a way that Simulink
can understand. One way to do this is as follows. Since the time variable is con-
tinuous, we start by opening the “Continuous” library, in UNIX by double-clicking
on the third icon from the left of the top row in Figure 8.1, or in Windows either by
clicking on the small symbol � to the left of the “Continuous” icon at the top right of
Figure 8.2, or else by clicking on the small icon to the left of the word “Continuous”
in the left-hand panel of the Simulink Library Browser. When opened (on a Windows
system), the “Continuous” library looks like Figure 8.3.

Notice that u and u′ are obtained from u′ and u′′ (respectively) by integrating.
Therefore, drag two copies of the Integrator block into the model window, and line
them up with the mouse. Simulink will automatically label the second one “Inte-
grator1”, to distinguish it from the first block called “Integrator”. Note that each
Integrator block has an input port and an output port. Align the output port of the
Integrator with the input port of the Integrator1 and join them with an arrow, using
the left button on the mouse. The arrow joining two blocks is called a signal. Double-
click on this arrow and a little box will appear, in which you can type the label u′.
(Alternatively, you can right-click on the arrow, select Signal Properties..., and type
your label in the Signal Name box.) As before, add arrows leading into the Integrator
(representing u′′) and leading out of the Integrator1 (representing u); these will not
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Figure 8.3. The Continuous Library.

yet connect to another block, so Simulink marks them with dotted lines to remind you
that they are not fully operative. The idea so far is that u is obtained by integration
from u′, and u′ is obtained by integration from u′′. Your model window should now
look like Figure 8.4.

Figure 8.4. The First Stage of the Simulink Model.

Now we want to make use of the differential equation, which can be rewritten in the
form u′′ = −5u − 2u′. So we want to add other blocks to relate u′′, the input to the
first Integrator block, to u and u′ according to this equation. For this purpose we add
two Gain blocks, which implement multiplication by a constant, and one Sum block,
used for addition. These are all chosen from the “Math Operations” library (seventh
from the top in Figure 8.2, or first in the second row in Figure 8.1). Hooking them
up the same way we did with the Integrator blocks gives a model window that looks
something like Figure 8.5.

1
s

Integrator1

1
s

Integrator

1

Gain1

1

Gain

u’ uu’’

Figure 8.5. The Second Stage of the Simulink Model.

We need to go back and edit the properties of the Gain blocks, to change the
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constants by which they multiply from the default of 1 to −5 (in “Gain”) and −2 (in
“Gain1”). To do this, double-click on each Gain block in turn. A Block Parameters
box will open, in which you can change the Gain parameter to whatever you need.
Next, we need to send u′, the output of the first Integrator block, to the input port
of block “Gain1”. This presents a problem, since an Integrator block has only one
output port and it’s already connected to the next Integrator block. So we need to
introduce a branch line. Position the mouse in the middle of the arrow connecting the
two Integrators, hold down the CTRL key with one hand, simultaneously push down
the left mouse button with the other hand, and drag the mouse around to the input port
of the block entitled “Gain1”. At this point we’re almost done; we just need a block
for viewing the output. Open up the “Sinks” library and drag a copy of the Scope
block into the model window. Hook this up with a branch line (again using the CTRL

key) to the line connecting the second Integrator and the Gain block. At this point
you might want to relabel some of the blocks (by editing the text under each block),
and also label some more of the arrows as before. We end up with the model shown
in Figure 8.6.

Scope

1
s

Integrator1

1
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Integrator

−2
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Gain

u’ u −5uu’’

−2u’

Figure 8.6. A Simulink Model for u′′ = −5u − 2u′.

Now we’re ready to run our simulation. First, it is a good idea to save the
model, using Save as... from the File menu. One might choose to give it the name
dampedosc. (MATLAB automatically adds the file extension .mdl, which stands
for “model.”) To see what is happening during the simulation, double-click on the
Scope block to open an “oscilloscope” that will plot u as a function of t. Of course
one needs to set initial conditions also; this can be done by double-clicking on the In-
tegrator blocks and changing the line of the Block Parameters box that reads “Initial
condition”. For example, suppose that we set the initial condition for u′ (in the first
Integrator block) to 5 and the condition for u (in the second Integrator block) to 1. In
other words, we are solving the system

u′′ + 2u′ + 5u = 0,

u(0) = 1,

u′(0) = 5,

which happens to have the exact solution

u(t) = 3e−t sin(2t) + e−t cos(2t).
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Go to the Simulation menu and hit Start. You should see in the Scope window some-
thing like Figure 8.7. This of course is simply the graph of the function 3e−t sin(2t)+
e−t cos(2t). (By the way, you might need to change the scale on the vertical axis of the
Scope window. Clicking on the “binoculars” icon does an “automatic” rescale, and
right-clicking on the vertical axis opens an Axes Properties... menu that enables you
to select manually the minimum and maximum values of the dependent variable.) It
is easy to go back and change some of the parameters and re-run the simulation again.

Figure 8.7. Scope Solution of u′′ = −5u − 2u′, u(0) = 1, u′(0) = 5.

✓ Your first instinct might be to rely on the Derivative block, rather than the
Integrator block, for simulating differential equations. But this has two draw-
backs: it is harder to put in the initial conditions, and also numerical differ-
entiation is much less stable than numerical integration.

Finally, suppose that one now wants to study the inhomogeneous equation for
“forced oscillations,” u′′ + 2u′ + 5u = g(t), where g is a specified “forcing” term.
For this, all we have to do is add another block to the model from the Sources library.
Click on the shaft of the arrow at the top of the model going into the first Integrator and
use Cut from the Edit menu to remove it. Then drag in another “Sum” block (from
the Math Operations library) before the first Integrator and input a suitable source to
one input port of the “Sum” block. For example, if g(t) is to represent “noise,” drag
the Band-Limited White Noise block from the “Sources” library into the model and
hook everything up as shown in Figure 8.8.

The output from this revised model (with the default values of 0.1 for the noise
power and 0.1 for the noise sample time) looks like Figure 8.9. The effect of noise on
the system is clearly visible from the simulation.

✰ An Engineering Example

Now we present a more complicated example, typical of an engineering application
of Simulink. Consider a crane used for loading shipping containers at a port. It can
be schematically represented by Figure 8.10.
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Scope
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Figure 8.8. A Simulink Model of u′′ = −5u − 2u′ + g(t).

Figure 8.9. Scope Solution of an ODE with Noise.

Here we assume for simplicity that the radii of the pulleys and the size of the con-
tainer are negligible, and that the pulley in the upper right can be moved horizontally,
so that the crane operator can adjust the parameters w (the separation of the two pul-
leys) and l (the length of the cable holding the container) at will. We place our origin
at the fixed pulley, so that, in terms of the parameters w, l, and θ (the angle between
the cable and the vertical), the container is located at the point with coordinates

(x, y) = (w, 0) + (l sin θ,−l cos θ) = (w + l sin θ,−l cos θ). (8.1)

We want to simulate the result of lifting the container off the ground at point (w0,−l0),
dragging it, and then depositing it again at point (w1,−l0). In particular, we want to
control the side-to-side oscillations, so that the swinging container won’t hit some-
thing or somebody. For simplicity, we assume that the only forces on the container
are tension in the cable (which can vary with time) and gravity. (So we neglect air
resistance, for example.)

Let’s make a further simplification: we assume that the crane operator moves the
container in three steps, where in the first step the container is lifted straight up, in the
second step l (the length of the cable connecting the container to the movable pulley)
is held fixed, and in the third step the container is lowered straight down. Steps 1 and
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l
w

Figure 8.10. A Crane for Loading Containers.

3 are not especially interesting, so we concentrate on step 2, which means we assume
that l is held constant and w is a function of time to be selected by the crane operator,
with initial value w0 and final value w1. Let m be the mass of the container. To get the
equations of motion, note that the kinetic energy K and gravitational potential energy
V of the container are given by

K =
m

2
(
(x′)2 + (y′)2

)
=

m

2

((
w′ + l(cos θ)θ′

)2 +
(
l(sin θ)θ′

)2
)

=
m

2

(
(w′)2 + l2(θ′)2 + 2lw′(cos θ)θ′

)

V = mgy = −mgl cos θ.

(8.2)

In Lagrangian mechanics, the equation of motion is

∂L

∂θ
=

d

dt

∂L

∂θ′
,

where the Lagrangian is L = K − V , so (after dividing out by the constant factor of
m) we get

−gl sin θ − lw′(t)(sin θ)θ′ =
d

dt

(
l2θ′ + lw′(t) cos θ

)

= l2θ′′ + lw′′(t) cos θ − lw′(t)(sin θ)θ′,

or (after dividing by l2)

θ′′ +
1
l
w′′(t) cos θ +

g

l
sin θ = 0, (8.3)

which is the usual “pendulum equation” (see the discussion of the nonlinear pendulum
in Chapter 10) with an extra term in it involving w′′(t), the horizontal acceleration
of the crane. Now we can build our Simulink model for the crane. We want to
experiment with various possibilities for w(t) and see what effect these have on the
measure of “swinging,” θ(t). Let’s use meters and seconds as our units and take
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g = 9.81 m/sec2, l = 5 m, w0 = 0, and w1 = 10 m. The time required to move the
container should be on the order of a few minutes, or let’s say about 200 sec. So we
want w to be a continuous function, preferably with a continuous second derivative
(since the force on the motor driving the pulley is proportional to w′′ and should be a
continuous function of time), with w(0) = 0 and w(200) = 10. A way to get such a
function is to take

w(t) = 5 + a(t − 100) + b(t − 100)3 + c(t − 100)5.

This ensures that w(100) = 5 and that the graph of w has odd symmetry around the
point (100, 5). In fact, since only odd powers of t − 100 appear in the formula for
w(t)− 5, it follows that w(100 + t)− 5 = −(w(100− t)− 5), and, on setting t = 0,
we see that 2w(100) = 10 or w(100) = 5. Putting t = 100 into this equation gives
w(200) − 5 = −w(0) + 5, so we’ll have w(200) = 10 if w(0) = 0. Thus we solve
for the coefficients a, b, and c so that w(0) = w′(0) = w′′(0) = 0. Here is a solution
obtained using MATLAB:

>> syms t a b c;
>> w = 5 + a*(t-100) + b*(t-100)ˆ3 + c*(t-100)ˆ5;
>> w0 = subs(w, t, 0);
>> w1 = subs(diff(w,t), t, 0);
>> w2 = subs(diff(w,t,2), t, 0);
>> [aa, bb, cc] = solve(w0, w1, w2);
>> w = subs(w, [a,b,c], [aa,bb,cc])

w =
-35/8+3/32*t-1/160000*(t-100)ˆ3+3/16000000000*(t-100)ˆ5

A plot of this function is shown in Figure 8.11. For this function, the formula for
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Figure 8.11. A Possible w(t).

w′′(t) is:

>> diff(w, t, 2)

ans =
-3/80000*t+3/800+3/800000000*(t-100)ˆ3
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Figure 8.12. A Simulink Model for Studying the Motion of a Crane.

A possible Simulink model for studying this system is shown in Figure 8.12. Let’s
discuss how this model works and how to assemble it. We begin by rewriting equation
(8.3) in the form

θ′′ = −g

l
sin θ − 1

l
w′′(t) cos θ.

Thus we want to represent θ′′ as a sum of two terms, each with a “minus sign” in front,
which are assembled together in an Add block. (By the way, there is no difference
between the Add and Sum blocks except for the shape of the representing icon.) The
signal representing θ′′ then enters the block called Integrator1 at the upper left, and
the signal exiting the second Integrator represents θ itself. The Clock block outputs
the value of t, which goes into a Function block (from the User-Defined Functions
library) used for computing w′′(t). The Product and Trigonometric Function blocks,
both from the Math Operations library, are self-explanatory. There are two Gain
blocks, again from the Math Operations library, used to multiply sin θ and cos θ by
the constants g/l and 1/l, respectively. For convenience, we have renamed these
two blocks to indicate which is which. To rename a block, click on the label under the
block and the label will be surrounded by a gray box. You can then erase the old name
and insert a new one. As in the example in the previous section, the Gain blocks have
to be customized for the appropriate constants using the Block Parameters dialog box.
Similarly, the Block Parameters dialog box for the “Trigonometric Function1” block
can be used to switch from the sine function (the default) to the cosine function that
we need. Since the crane starts at rest (with initial conditions θ(0) = θ′(0) = 0, we
do not need to change the default initial condition of 0 in each of the Integrator blocks.
One does need to customize the Function block by inserting the formula for w′′(u).
(Simulink insists here that the independent variable be called u, not t.) Finally, one
needs to click on the Simulation menu to change the maximum value of t from the
default of 5 to the value 200 needed for this problem.

Running the simulation results (after you have clicked on the “binoculars” icon
to rescale the graph) in the Scope picture shown in Figure 8.13. If you look at the
legend on the picture, you will see that the maximum value of θ is on the order of
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2 × 10−4 radians, which is pretty small, even when multiplied by the length of the
cable, l = 5 m. So we conclude that the shaking of the container is not a serious
problem in this case.

Figure 8.13. Scope Output of the Oscillations of a Crane.

✰ Communication with the Workspace

The examples we have discussed should suffice to give you an idea of how to use
Simulink as a stand-alone simulation tool. But part of the power of Simulink comes
from the way it can be combined with MATLAB. For example, one can run a Simulink
model from within an M-file, or do further processing within MATLAB on the output
of a Simulink simulation. In this section, we discuss some of the key commands for
combining Simulink with MATLAB.

We’ll begin with a practical example. Suppose that we want to recompute the
formula for w(t) in the crane example so that w reaches the value of 10 at t = 20
instead of at t = 200. In other words, we want to retain the shape of w(t) in Figure
8.11, but compress the scale on the horizontal axis by a factor of 10. What happens to
the oscillations now that the crane moves the container more rapidly? Is the process
now dangerous? To answer this question, we replace the old w(t) by

>> w = simplify(subs(w, t, 10*t))

w =
1/80*tˆ3+3/160000*tˆ5-3/3200*tˆ4

and replace the old w′′(t) by

>> diff(w, t, 2)

ans =
3/40*t+3/8000*tˆ3-9/800*tˆ2

The first thing we need to do is to make a change in the parameters of the block labeled
f(u) in Figure 8.12. It is possible to do this with the commands get_param and
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set_param from the command line or from an M-file, not just by bringing up the
Block Parameters box. This is especially convenient if you need to a run a simulation
many times with various values of the parameters. Sometimes it helps to use the
commands gcs (“get current system”) and find_system to locate the names of
the relevant blocks. Here’s an example, based on the supposition that we’ve already
opened the model in Figure 8.12.

>> gcs

ans =
crane

>> find_system(gcs, ’Type’, ’block’)

ans =
’crane/1//l’
’crane/Add’
’crane/Clock’
’crane/Integrator’
’crane/Integrator1’
’crane/Product’
’crane/Scope’
’crane/Trigonometric

Function’
’crane/Trigonometric

Function1’
’crane/g//l’
’crane/w"’

This gives us the names of all of the blocks; in this case, we need to change the param-
eters of the block entitled ’crane/w"’. (If we wanted to change the cable length,
we would also have to change the blocks ’crane/1//l’ and ’crane/g//l’.)
To see the current value of the ’Expr’ parameter of this block, which encodes the
function w′′(t), we type

>> get_param(’crane/w"’, ’Expr’)

ans =
-3/80000*u+3/800+3/800000000*(u-100)ˆ3

So we can reset this with

>> set_param(’crane/w"’, ’Expr’, ...
’3/40*u+3/8000*uˆ3-9/800*uˆ2’)

To re-run the model, instead of using Simulation:Start, we can use the command
sim from the command line or within an M-file. The simplest form of this command
just runs the model with the existing parameters. But one can also use this command
to set the time interval and to send the output to the workspace. For example, in our
situation, we would type

>> [t, theta] = sim(’crane’, [0, 20]);

We could then type
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>> plot(t, theta)

to plot the results, giving the picture in Figure 8.14. Here the curve that ends up on top
represents θ(t), and the other curve represents θ′(t). Or to duplicate what would be
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Figure 8.14. Plot of θ(t) and θ′(t) for the Revised Crane Model.

seen in the Scope window, we can replace plot by simplot, getting Figure 8.15:

>> simplot(t, theta(:,1))
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Figure 8.15. “Scope” Plot of θ(t) for the Revised Crane Model.

✓ Incidentally, if you draw a plot with simplot, it always appears in the figure
window as in Figure 8.15, with a light-colored plot on a black background.
But if you print the plot (either to the printer or to a file), it will sometimes
(depending on your print defaults) appear with the colors reversed, i.e., as
a dark plot on a white background. To undo this color reversal, you need to
insert the command

>> set(gcf, ’InvertHardcopy’, ’off’)

before executing the print command.

The result of our analysis shows that, if the shipping container is moved in 20
seconds instead of 200, the oscillations are on the order of 0.02 radians. Thus the
container will swing back and forth about 0.10 m or 10 cm, which is again a reason-
able amount. We leave it to the reader to see what happens if the container is moved
in only 2 seconds!
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✰ GUIs

With MATLAB you can create your own Graphical User Interface, or GUI, which
consists of a Figure window containing menus, buttons, text, graphics, etc., that a
user can manipulate interactively with the mouse and keyboard. There are two main
steps in creating a GUI: one is designing its layout, and the other is writing callback
functions that perform the desired operations when the user selects different features.

GUI Layout and GUIDE

Specifying the location and properties of various objects in a GUI can be done with
commands such as uicontrol, uimenu, and uicontextmenu in an M-file.
MATLAB also provides an interactive tool (a GUI itself!) called GUIDE (this stands
for Graphical User Interface Development Environment) that greatly simplifies the
task of building a GUI. We will describe here how to get started writing GUIs with
the MATLAB 7 version of GUIDE, which has some significant enhancements over
earlier versions. The version of GUIDE in MATLAB 6 is roughly similar, but some
of the menu items and options are different or missing.

✓ One possible drawback of GUIDE is that it equips your GUI with commands
that are new in MATLAB 7 and it saves the layout of the GUI in a binary
.fig file. If your goal is to create a robust GUI that many different users can
use with different versions of MATLAB, you may be better off writing the
GUI from scratch as an M-file.

To open GUIDE, select File:New:GUI from the Desktop menu bar or type guide
in the Command Window. You will see the GUIDE Quick Start dialog box, shown in
Figure 9.1.

Note that there are two tabs at the top. The left-hand one, “Create New GUI”,
is open by default. You can start by selecting one of the various kinds of GUIs on
the left. This will pop open the Layout Editor, in which you design the appearance
of your GUI. For purposes of the example here, we’ll assume that you select the
third item, “GUI with Axes and Menu”. The Layout Editor that opens looks like
Figure 9.2. (We’ve shown the version that appears in UNIX or Linux. In Windows,
there is one extra button on the left, for “ActiveX” controls.) Let’s say that you want
to design a GUI that will accept a MATLAB plotting command as input, display the
corresponding output, and have buttons for making various changes in the appearance
of the output.

123
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Figure 9.1. The GUIDE Quick Start Dialog Box.

Figure 9.2. The Layout Editor.

The buttons at the left of the Layout Editor are used for inserting various kinds
of objects. You build a GUI by clicking on one of these buttons, then moving to a
desired location in the grid, and clicking again to place an object on the grid. To see
what type of object each button corresponds to, move the mouse over a button but
don’t click; soon a yellow box with the name of the button will appear. Once you
have placed an object on the grid, you can click and drag (hold down the left mouse
button and move the mouse) on the middle of the object to move it or click and drag
on a corner to resize the object. After you have placed several objects, you can select
multiple objects by clicking and dragging on the background grid to enclose them
with a rectangle. Then you can move the objects as a block with the mouse, or align
them by selecting Align Objects... from the Tools menu.

To change properties of an object such as its color, the text within it, etc., you must
open the Property Inspector window. To do so, you can double-click on an object,
or choose Property Inspector from the View menu and then select the object you
want to alter with the left mouse button. You can leave the Property Inspector open
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throughout your GUIDE session and go back and forth between it and the Layout
Editor.

Figure 9.3. The Layout Editor with Design for a “Plot GUI”.

Figure 9.3 shows what the Layout Editor window looks like after several objects
have been placed and their properties adjusted. Let us describe how we created the
objects that make up the GUI.

The two boxes on the top, as well as the one labeled “Set axis scaling:”, are
Static Text boxes, which the user of the GUI will not be allowed to manipulate. To
create each of them, we first clicked on the “Static Text” button – the one to the
left of the grid labeled “TXT” – and then clicked in the grid where we wanted to
add the text. Next, to set the text for the box we opened the Property Inspector and
clicked on the square button next to “String”, which opens a new window that contains
editable default text. Finally, we resized each box according to the length of its text
(by clicking on a corner and dragging it).

The buttons labeled “Plot it!”, “Change axis limits”, and “Clear figure” are all
Push Button objects, created using the button labeled “OK”. To make these buttons
all the same size, we first created one of them and then, after sizing it, we duplicated
it (twice) by clicking the right mouse button on the existing object and selecting Du-
plicate. We then moved each new Push Button to a different position and changed its
text in the same way as we did for the Static Text boxes.

The blank box near the top of the grid is an Edit Text box, which allows the user
to enter text. We created it with the button labeled “EDIT” and then cleared its default
text in the same way that we changed text before. Below the Edit Text box is a large
Axes box, resized from the one already present in Figure 9.2, and in the lower right
the button labeled “Hold is OFF” is a Toggle Button, created with the button labeled
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“TGL”. For toggling (on–off) commands you could also use a Radio Button or a
Checkbox, which are denoted, respectively, by the buttons with a dot and a check
mark in them. Finally, the box on the right that says “equal” is a Popup Menu – its
button in the Layout Editor is right below the Edit Text button. Popup Menus and
Listbox objects allow you to let the user choose among several options.

We moved, resized, and in most cases changed the properties of each object in the
fashion described above. In the case of the Popup Menu, after we selected the “String”
button in the Property Inspector, we entered into the window that appeared three
words on three separate lines: equal, normal, and square. Using multiple lines
is necessary in order to give the user multiple choices in a Popup Menu or Listbox
object.

✓ In addition to populating your GUI with the objects we described above, you
can create a menu bar for it using the Menu Editor, which you can open by
selecting Menu Editor... from the Tools menu. You can also use the Menu
Editor to create a context menu for an object; this is a menu that appears when
you click the right mouse button on the object. See the online documentation
for GUIDE to learn how to use the Menu Editor.

We also gave our GUI a title, which will appear in the title bar of its window, as
follows. We clicked on the background grid in the Layout Editor to select the entire
GUI (as opposed to an object within it) and went to the Property Inspector. There we
changed the text to the right of “Name” from “Untitled” to “Simple Plot GUI”.

Saving and Running a GUI

To save a GUI, select Save As... from the File menu. Type a file name for your GUI
without any extension; for the GUI described above we chose plotgui. When you
save, two files are created, an M-file and a binary file with extension .fig, so in
our case the resulting files were named plotgui.m and plotgui.fig. When
you save a GUI for the first time, the M-file for the GUI will appear in a separate
Editor/Debugger window. We will describe how and why to modify this M-file in the
next section.

➯ The instructions in this and the following section assume the default set-
tings of the GUI Options..., which you may have inspected upon start-
ing GUIDE, as described above. Otherwise, you can access them from
the Tools menu. We assume in particular that “Generate FIG-file and
M-file”, “Generate callback function prototypes”, and “GUI allows only
one instance to run” are selected.

Once it has been saved, you can run the GUI from the Command Window by
typing its name, in our case plotgui, whether or not GUIDE is running. Both the
.fig file and the .m file must be in your current directory or MATLAB path. You
can also run it from the Layout Editor by typing CTRL+T or selecting Run from the
Tools menu. A copy of the GUI will appear in a separate window, without all the
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surrounding menus and buttons of the Layout Editor. (If you have added new objects
since the last time you saved or activated the GUI, the M-file associated with the GUI
will also be brought to the front.) Figure 9.4 shows how the GUI we created above
looks when activated. The plot in the axes window will be explained in the section
GUI Callback Functions.

Figure 9.4. The “Plot GUI” Activated.

Notice that the appearance of the GUI differs slightly from that in the GUIDE
window; in particular, the font size may differ. For this reason you may have to go
back to the GUIDE window after activating a GUI and resize some objects accord-
ingly. The changes you make will not immediately appear in the active GUI; to see
their effect you must activate the GUI again.

The objects you create in the Layout Editor are inert within that window – you
can’t type text in the Edit Text box, you can’t see the additional options by clicking
on the Popup Menu, etc. But, in an activated GUI window, objects such as Toggle
Buttons and Popup Menus will respond to mouse clicks. However, they will not
actually perform any operations until you write a callback function for each of them.

GUI Callback Functions

When you are ready to create a callback function for a given object, make sure you’ve
saved your GUI. Then look at the Property Inspector for the object in the Layout
Editor, and under Tag you will see the tag by which it is identified in the M-file
associated with the GUI. Open the M-file in an Editor/Debugger window (if it’s not
open already), and go to the corresponding section of the M-file. You will see a small
block of text that looks like this:
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% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

All you need to do now to bring this Push Button to life is to add the commands that
you want performed when the user clicks on the button. Of course you also need to
save the M-file, which you can do in the usual way from the Editor/Debugger, or by
activating the GUI from the Layout Editor. Each time you save or activate a GUI,
a block of five lines like the ones above is automatically added to the GUI’s M-file
for any new objects or menu items that you have added to the GUI and that should
have callback functions. In many cases, after you have set enough properties of an
object, GUIDE is smart enough to insert some appropriate commands into the M-file
automatically, but you may need to modify them. For example, GUIDE puts into the
M-file a section that begins

% --- Executes just before plotgui is made visible.
function plotgui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

and includes the lines

% This sets up the initial plot - only do when we are invisible
% so window can get raised using plotgui.
if strcmp(get(hObject,’Visible’),’off’)

plot(rand(5));
end

It is this section of the M-file that is responsible for the “random lines” that you see
in the axes window in Figure 9.4. Had we taken these lines out or modified them, the
GUI could have come loaded with a very different picture, or with no picture at all.

For the Popup Menu on the right-hand side of the GUI, we put the following lines
into its callback function (modified from the template that came with the primordial
GUI of Figure 9.2).

popup_sel_index = get(hObject, ’Value’);
switch popup_sel_index

case 1
axis equal

case 2
axis normal

case 3
axis square

end

Each time the user of the GUI selects an item from a Popup Menu, MATLAB sets
the “Value” property of the object to the line number selected and runs the associated
callback function. As we described in Chapter 5, you can use get to retrieve the
current setting of a property of a graphics object. When you use the callback templates
provided by GUIDE as we have described, the variable hObject will contain the
handle (the required first argument of get and set) for the associated object. (If
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you are using another method to write callback functions, you can use the MATLAB
command gcbo in place of hObject.) For our sample GUI, line 1 of the Popup
Menu says “equal”, and, if the user selects line 1, the callback function above runs
axis equal; line 2 says “normal”, etc.

✓ You may have noticed that the Popup Menu in Figure 9.4 says “normal” rather
than “equal” as in Figure 9.3; that’s because we set its “Value” property to 2
when we created the GUI, using the Property Inspector. In this way you
can make the default selection something other than the first item in a Popup
Menu or Listbox.

For the Push Button labeled “Plot it!”, we wrote the following callback function:

set(handles.figure1, ’HandleVisibility’, ’callback’);
eval(get(handles.edit1, ’String’))

Here handles.figure1 and handles.edit1 are the handles for the entire
GUI window and for the Edit Text box, respectively. Again these variables are pro-
vided by the callback templates in GUIDE, and if you do not use this feature you
can generate the appropriate handles with gcbf and findobj(gcbf, ’Tag’,
’edit1’), respectively. The second line of the callback function above uses get
to find the text in the Edit Text box and then runs the corresponding command with
eval. The first line uses set to make the GUI window accessible to graphics com-
mands used within callback functions; if we did not do this, a plotting command run
by the second line would open a separate figure window.

✓ We could also associate a callback function with the Edit Text box; this func-
tion would be run each time the user presses the ENTER key after typing text
in the box. The callback function eval(get(hObject, ’String’))
will run the command just typed, providing an alternative to (or making su-
perfluous) the “Plot it!” button.

✓ Another way to enable plotting within a GUI window is to select GUI Op-
tions... from the Tools menu in the Layout Editor, and within the window
that appears change “Command-line accessibility” from “Callback” to “On”.
This has the possible drawback of allowing plotting commands the user types
in the Command Window to affect the GUI window. A safer approach is to
keep “Command-line accessibility” set to “Callback”. With this setting, the
line

set(handles.figure1, ’HandleVisibility’, ’callback’);

in the callback functions becomes unnecessary. However, we recommend
keeping this line in the callback functions in case you decide to change the
“Command-line accessibility” later.

In the example plotgui from the previous section, there is one case where we
used an existing MATLAB command as a callback function. For the Push Button la-
beled “Change axis limits...”, we simply entered axlimdlg into its callback function
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in plotgui.m. This command opens a dialog box that allows a user to type new
values for the ranges of the x- and y-axes. MATLAB has a number of dialog boxes
that you can use either as callback functions or in an ordinary M-file. For example,
you can use inputdlg in place of input. Type help uitools for information
on available dialog boxes.

Here is our callback function for the Push Button labeled “Clear figure”:

set(handles.edit1, ’String’, ’’);
set(handles.figure1, ’HandleVisibility’, ’callback’);
cla reset

The first line clears the text in the Edit Text box and the last line clears the Axes box in
the GUI window. (If your GUI contains more than one Axes box, you can use axes
to select the one you want to manipulate in each of your callback functions.)

We used the following callback function for the Toggle Button labeled “Hold is
OFF”:

set(handles.figure1, ’HandleVisibility’, ’callback’);
if get(hObject, ’Value’)

hold on
set(hObject, ’String’, ’Hold is ON’);

else
hold off
set(hObject, ’String’, ’Hold is OFF’);

end

We get the “Value” property of the Toggle Button in the same way as in the Popup
Menu callback function above, but for a Toggle Button this value is either 0 if the
button is “out” (the default) or 1 if the button is pressed “in.” (Radio Buttons and
Checkboxes also have a “Value” property of either 0 or 1.) When the user first presses
the Toggle Button, the value is set to 1, so the callback function above runs hold on
and resets the string displayed on the Toggle Button to reflect the change. The next
time the user presses the button, these operations are reversed.

Finally, with an object in a GUI you can also associate a variant of a callback
function called a “ButtonDownFcn” instead. Such a function will begin something
like

% --- Executes on mouse press over axes background.
function axes1_ButtonDownFcn(hObject, eventdata, handles)

and will be run when the user clicks in the axes window, or in the case of other
objects such as a Push Button, clicks with the right mouse button (as opposed to the
left mouse button for the callback function). To create such a function, you can right-
click on the object in the Layout Editor and select View Callbacks:ButtonDownFcn.
You can associate functions with several other types of user events as well; to learn
more, see the online documentation, or experiment by clicking the right mouse button
on various objects and on the grid behind them in the Layout Editor.
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Applications

In this chapter, we present examples showing you how to apply MATLAB to prob-
lems in several disciplines. Each example is presented in the form of a MATLAB
M-file, published to LATEX. We modified the default style sheet for publishing to
LATEX to adjust the spacing between input, output, and text, and to allow formatting
of mathematical formulas not just as displayed equations but also within a paragraph.
We also made a few minor adjustments to the published LATEX code to improve line
breaks. Finally, because publish does not produce italic text, we used bold text
instead in places. These examples are illustrations of the kinds of polished, integrated
documents that you can create with MATLAB. The examples are:

• Illuminating a Room

• Mortgage Payments

• Monte Carlo Simulation

• Population Dynamics

• Linear Economic Models

• Linear Programming

• The 360◦ Pendulum

• ✰ Numerical Solution of the Heat Equation

• ✰ A Model of Traffic Flow

We have not explained all the MATLAB commands that we use; you can learn about
the new commands from the online help. Simulink is used in A Model of Traffic
Flow and as an optional accessory in Population Dynamics and Numerical Solution
of the Heat Equation. The example on Linear Programming also requires an M-file
found (in slightly different forms) in the Simulink and Optimization toolboxes. The
examples require different levels of mathematical background and expertise in other
subjects. Illuminating a Room, Mortgage Payments, and Population Dynamics use
only high-school mathematics. Monte Carlo Simulation uses some probability and
statistics; Linear Economic Models and Linear Programming, some linear algebra;
The 360◦ Pendulum, some ordinary differential equations; Numerical Solution of the
Heat Equation, some partial differential equations; and A Model of Traffic Flow, dif-
ferential equations, linear algebra, and familiarity with the function ez for z a complex
number. Even if you don’t have the background for a particular example, you should
be able to learn something about MATLAB from the presentation.

131
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Illuminating a Room

Suppose that we need to decide where to put light fixtures on the ceiling of a room
measuring 10 m by 4 m by 3 m high in order to illuminate it best. For aesthetic
reasons, we are asked to use a small number of incandescent bulbs. We want the
bulbs to total a maximum of 300 watts. For a given number of bulbs, how should they
be placed to maximize the intensity of the light in the darkest part of the room? We
also would like to see how much improvement there is in going from one 300-watt
bulb to two 150-watt bulbs to three 100-watt bulbs, and so on. To keep things simple,
we assume that there is no furniture in the room and that the light reflected from the
walls is insignificant compared with the direct light from the bulbs.

One 300-Watt Bulb

If there is only one bulb, then we want to put the bulb in the center of the ceiling.
Let’s picture how well the floor is illuminated. We introduce coordinates x running
from 0 to 10 in the long direction of the room, and y running from 0 to 4 in the short
direction. The intensity at a given point, measured in watts per square meter, is the
power of the bulb, 300, divided by 4π times the square of the distance from the bulb.
Since the bulb is 3 m above the point (5, 2) on the floor, at a point (x, y) on the floor,
we can express the intensity as follows.

syms x y; illum = 300/(4*pi*((x - 5)ˆ2 + (y - 2)ˆ2 + 3ˆ2))

illum =

75/pi/((x-5)ˆ2+(y-2)ˆ2+9)

We can use ezcontourf to plot this expression over the entire floor. We use the op-
tion colormap to arrange for a color gradation that helps us to see the illumination.
(See the online help for more colormap options.)

ezcontourf(illum, [0 10 0 4])
colormap(’gray’); axis equal tight
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75/π/((x−5)2+(y−2)2+9)
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The darkest parts of the floor are the corners. Let us find the intensity of the light at
the corners and at the center of the room.
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subs(illum, {x, y}, {0, 0})

ans =

0.6282

subs(illum, {x, y}, {5, 2})

ans =

2.6526

The center of the room, at floor level, is about four times as bright as the corners
when there is only one bulb on the ceiling. Our objective is to light the room more
uniformly using more bulbs with the same total amount of power. Before proceeding
to deal with multiple bulbs, we observe that the use of ezcontourf is somewhat
confining, as it does not allow us to control the number of contours in our pictures.
This will be helpful in seeing the light intensity; therefore we shall plot numerically
rather than symbolically, that is we shall use contourf instead of ezcontourf.

Two 150-Watt Bulbs

In this case we need to decide where to put the two bulbs. Common sense tells us to
arrange the bulbs symmetrically along a line down the center of the room in the long
direction; that is, along the line y = 2. Define a function that gives the intensity of
light at a point (x, y) on the floor due to a 150-watt bulb at a position (d, 2) on the
ceiling.

light2 = @(x,y,d) 150./(4*pi*((x - d).ˆ2 + (y - 2).ˆ2 + 3ˆ2));

Let’s get an idea of the illumination pattern if we put one light at d = 3 and the other
at d = 7. We specify the drawing of 20 contours in this and the following plots.

[X,Y] = meshgrid(0:0.1:10, 0:0.1:4);
contourf(light2(X, Y, 3) + light2(X, Y, 7), 20);
colormap(’gray’); axis equal tight
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The floor is more evenly lit than with one bulb, but it looks as if the bulbs are closer
together than they should be. If we move the bulbs further apart, the center of the
room will get dimmer but the corners will get brighter. Let’s try changing the location
of the lights to d = 2 and d = 8.
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contourf(light2(X, Y, 2) + light2(X, Y, 8), 20);
colormap(’gray’); axis equal tight
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This is an improvement. The corners are still the darkest spots of the room, though
the light intensity along the walls toward the middle of the room (near x = 5) is
diminishing as we move the bulbs further apart. Still, to better illuminate the darkest
spots we should keep moving the bulbs apart. Let’s try lights at d = 1 and d = 9.

contourf(light2(X, Y, 1) + light2(X, Y, 9), 20);
colormap(’gray’); axis equal tight
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Looking along the long walls, the room is now darker toward the middle than at
the corners. This indicates that we have spread the lights too far apart. We could
proceed with further contour plots, but instead let’s be systematic about finding the
best position for the lights. In general, we can put one light at x = d and the other
symmetrically at x = 10 − d for d between 0 and 5. Judging from the examples
above, the darkest spots will be either at the corners or at the midpoints of the two
long walls. By symmetry, the intensity will be the same at all four corners, so let’s
graph the intensity at one of the corners (0, 0) as a function of d.

d = 0:0.1:5;
plot(d, light2(0, 0, d) + light2(0, 0, 10 - d))
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As expected, the smaller d is, the brighter the corners are. In contrast, the graph for
the intensity at the midpoint (5, 0) of a long wall (again by symmetry it does not
matter which of the two long walls we choose) should grow as d increases toward 5.

d = 0:0.1:5;
plot(d, light2(5, 0, d) + light2(5, 0, 10 - d))
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We are after the value of d for which the lower of the two numbers on the above
graphs (corresponding to the darkest spot in the room) is as high as possible. We can
find this value by showing both curves on one graph.

hold on; plot(d, light2(0, 0, d) + light2(0, 0, 10 - d))
hold off
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The optimal value of d is at the point of intersection, near 1.4, with minimum intensity
a little under 1. To get the optimum value of d, we find exactly where the two curves
intersect.

syms d;
eqn = @(d) light2(0, 0, d) + light2(0, 0, 10 - d) - ...

light2(5, 0, d) - light2(5, 0, 10 - d);
dint = fzero(eqn, [0 5])

dint =

1.4410

So the lights should be placed about 1.44 m from the short walls. For this configura-
tion, the approximate intensity at the darkest spots on the floor is as follows.

light2(0, 0, dint) + light2(0, 0, 10 - dint)

ans =

0.9301

The darkest spots in the room have intensity around 0.93, as opposed to 0.63 for a
single bulb. This is an improvement of about 50%.

Three 100-Watt Bulbs

We redefine the intensity function for 100-watt bulbs.

light3 = @(x,y,d) 100./(4*pi*((x - d).ˆ2 + (y - 2).ˆ2 + 3ˆ2))
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light3 =

@(x,y,d) 100./(4*pi*((x - d).ˆ2 + (y - 2).ˆ2 + 3ˆ2))

Assume that we put one bulb at the center of the room and place the other two sym-
metrically as before. Here we show the illumination of the floor when the off-center
bulbs are 1 m from the short walls.

[X,Y] = meshgrid(0:0.1:10, 0:0.1:4);
contourf(light3(X, Y, 1) + light3(X, Y, 5) + ...

light3(X, Y, 9), 20);
colormap(’gray’); axis equal tight
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It appears that we should put the bulbs even closer to the walls. (This might not be
aesthetically pleasing for everyone!) Let d be the distance of the bulbs from the short
walls. We define a function giving the intensity at position x along a long wall and
then graph the intensity as a function of d for several values of x.

d = 0:0.1:5;
for x = 0:0.5:5

plot(d, light3(x, 0, d) + light3(x, 0, 5) + ...
light3(x, 0, 10 - d))

hold on
end; hold off
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We know that, for d near 5, the intensity will increase as x increases from 0 to 5, so the
bottom curve corresponds to x = 0 and the top curve to x = 5. Notice that the x = 0
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curve is the lowest one for all d, and it rises as d decreases. Thus d = 0 maximizes
the intensity of the darkest spots in the room, which are the corners (corresponding to
x = 0). There the intensity is as follows.

light3(0, 0, 0) + light3(0, 0, 5) + light3(0, 0, 10)

ans =

0.8920

This is surprising; we do worse than with two bulbs. In going from two bulbs to three,
with a decrease in wattage per bulb, we are forced to move wattage away from the
ends of the room and bring it back to the center. We could probably improve on the
two-bulb scenario if we used brighter bulbs at the ends of the room and a dimmer bulb
in the center, or if we used four 75-watt bulbs. But our results so far indicate that the
amount to be gained in going to more than two bulbs is likely to be small compared
with the amount we gained by going from one bulb to two.

Mortgage Payments

We want to understand the relationships between the mortgage payment of a fixed
rate mortgage, the principal (the amount borrowed), the annual interest rate, and the
period of the loan. We are going to assume (as is usually the case in the United States)
that payments are made monthly, even though the interest rate is given as an annual
rate. Let’s define

peryear = 1/12; percent = 1/100;

So the number of payments on a 30-year loan is

30*12

ans =

360

and an annual percentage rate of, say, 8% comes out to a monthly rate of

8*percent*peryear

ans =

0.0067
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Now consider what happens with each monthly payment. Some of the payment is
applied to interest on the outstanding principal amount, P , and some of the payment
is applied to reduce the principal owed. The total amount, R, of the monthly payment,
remains constant over the life of the loan. So if J denotes the monthly interest rate,
then the amount applied to reduce the principal is R−JP , and the new principal after
the payment is applied is

P − R + JP = P (1 + J) − R = Pm − R,

where m = 1 + J . So a table of the amount of the principal still outstanding after n
payments is tabulated as follows for a loan of initial amount A, for n from 0 to 6:

syms m J P R A n
disp(’No. of Payments Remaining Principal’);
P = A;
for n = 0:6

disp([num2str(n), ’ ’, char(P)])
P = simplify(-R + P*m);

end

No. of Payments Remaining Principal
0 A
1 -R+A*m
2 -R-m*R+A*mˆ2
3 -R-m*R-mˆ2*R+A*mˆ3
4 -R-m*R-mˆ2*R-mˆ3*R+A*mˆ4
5 -R-m*R-mˆ2*R-mˆ3*R-mˆ4*R+A*mˆ5
6 -R-m*R-mˆ2*R-mˆ3*R-mˆ4*R-mˆ5*R+A*mˆ6

We can write this in a simpler way by noticing that

P = Amn + (terms divisible by R)

For example, with n = 7 we have:

factor(P - A*mˆ7)

ans =

-R*(1+m+mˆ2+mˆ3+mˆ4+mˆ5+mˆ6)

But on the other hand the quantity inside the parentheses is the sum of a geometric
series



140 Chapter 10. Applications

n−1∑
k=1

mk =
mn − 1
m − 1

.

So we see that the principal after n payments can be written as

P = Amn − R(mn − 1)/(m − 1).

Now we can solve for the monthly payment amount R under the assumption that the
loan is paid off in N installments, i.e., P is reduced to 0 after N payments:

syms N;
solve(A*mˆN - R*(mˆN - 1)/(m - 1), R)
R = subs(ans, m, J + 1)

ans =

A*mˆN*(m-1)/(mˆN-1)

R =

A*(J+1)ˆN*J/((J+1)ˆN-1)

For example, with an initial loan amount A = $150,000 and a loan lifetime of 30
years (360 payments), we get the following table of payment amounts as a function
of annual interest rate:

format bank;
disp(’ Rate (%) Monthly Payment ($)’);
for rate = 1:10,
disp([rate,double(subs(R, {A, N, J}, ...

{150000, 360, rate*percent*peryear}))])
end

Rate (%) Monthly Payment ($)
1.00 482.46

2.00 554.43

3.00 632.41

4.00 716.12
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5.00 805.23

6.00 899.33

7.00 997.95

8.00 1100.65

9.00 1206.93

10.00 1316.36

Note the use of format bank to write the floating-point numbers with two digits
after the decimal point.

There’s another way to understand these calculations that’s a little slicker, and that
uses MATLAB’s linear-algebra capability. Namely, we can write the fundamental
equation

Pnew = Poldm − R

in matrix form as

vnew = Bvold,

where

v =
(

P
1

)

and

B =
(

m −R
0 1

)
.

We can check this using matrix multiplication:

syms R P; B = [m -R; 0 1]; v = [P; 1]; B*v

ans =

m*P-R
1
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which agrees with the formula we had above. Thus the column vector [P; 1] re-
sulting after n payments can be computed by left-multiplying the starting vector [A;
1] by the matrix Bn. Assuming that m > 1, that is, a positive rate of interest, the
calculation

[eigenvectors, diagonalform] = eig(B)

eigenvectors =

[ 1, 1]
[ 0, (m-1)/R]

diagonalform =

[ m, 0]
[ 0, 1]

shows us that the matrix B has eigenvalues m, 1, and corresponding eigenvectors

(
1
0

)
and

(
1

(m − 1)/R

)
=

(
1

J/R

)
.

Now we can write the vector [A; 1] as a linear combination of the eigenvectors:

(
A
1

)
= x

(
1
0

)
+ y

(
1

J/R

)
.

We can solve for the coefficients:

[x, y] = solve(’A = x*1 + y*1’, ’1 = x*0 + y*J/R’)

x =

(A*J-R)/J

y =

1/J*R
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and so

(
A
1

)
= (A − (R/J))

(
1
0

)
+ (R/J)

(
1

J/R

)
.

and

Bn

(
A
1

)
= (A − (R/J))mn

(
1
0

)
+ (R/J)

(
1

J/R

)
.

So the principal remaining after n payments is:

P = ((AJ − R)mn + R) /J = Amn − R(mn − 1)/J.

This is the same result that we obtained earlier. To conclude, let’s determine the
amount of money A one can afford to borrow as a function of what one can afford to
pay as the monthly payment R. We simply solve for A in the equation that P = 0
after N payments.

solve(A*mˆN - R*(mˆN - 1)/(m - 1), A)

ans =

R*(mˆN-1)/(mˆN)/(m-1)

For example, if one is shopping for a house and can afford to pay $1500 per month for
a 30-year fixed-rate mortgage, the maximal loan amount as a function of the interest
rate is given by

disp(’ Rate (%) Maximal Loan ($)’);
for rate = 1:10,

disp([rate,double(subs(ans, {R, N, m}, ...
{1500, 360, 1 + rate*percent*peryear}))])

end

Rate (%) Maximal Loan ($)
1.00 466360.60

2.00 405822.77

3.00 355784.07

4.00 314191.86
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5.00 279422.43

6.00 250187.42

7.00 225461.35

8.00 204425.24

9.00 186422.80

10.00 170926.23

Monte Carlo Simulation

In order to make statistical predictions about the long-term results of a random pro-
cess, it is often useful to do a simulation based on one’s understanding of the under-
lying probabilities. This procedure is referred to as the Monte Carlo method.

As an example, consider a casino game in which a player bets against the casino, and
the casino wins 51% of the time. The question is as follows: how many games have
to be played before the casino is reasonably sure of coming out ahead? This scenario
is common enough that mathematicians long ago figured out very precisely what the
statistics are, but here we want to illustrate how to get a good idea of what can happen
in practice without having to absorb a lot of mathematics.

First we construct an expression that computes the net revenue to the casino for a
single game, based on a random number chosen between 0 and 1 by the MATLAB
function rand. If the random number is less than or equal to 0.51, the casino wins
one betting unit, whereas if the number exceeds 0.51, the casino loses one unit. (In a
high-stakes game, each bet may be worth $1000 or more. Thus it is important for the
casino to know how bad a losing streak it may have to weather in order to turn a profit
so that it doesn’t go bankrupt first!) Here is an expression that returns 1 if the output
of rand is less than 0.51 and −1 if the output of rand is greater than 0.51 (it will
also return 0 if the output of rand is exactly 0.51, but this is extremely unlikely).

revenue = sign(0.51 - rand)

revenue =

-1

To simulate several games at once, say ten games, we can generate a vector of ten ran-
dom numbers with the command rand(1,10) and then apply the same operation.
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revenues = sign(0.51 - rand(1, 10))

revenues =

1 -1 1 -1 -1 1 1 -1 1 -1

Each 1 represents a game that the casino won, and each −1 represents a game that it
lost. For a larger number of games, say 100, we can let MATLAB sum the revenue
from the individual bets as follows:

profit = sum(sign(0.51 - rand(1, 100)))

profit =

-4

The output represents the net profit (or loss, if negative) for the casino after 100 games.
On average, every 100 games the casino should win 51 times and the player(s) should
win 49 times, so the casino should make a profit of 2 units (on average). Let’s see
what happens in a few trial runs.

profits = sum(sign(0.51 - rand(100, 10)))

profits =

14 -12 6 2 -4 0 -10 12 0 12

We see that the net profit can fluctuate significantly from one set of 100 games to the
next, and there is a sizable probability that the casino has lost money after 100 games.
To get an idea of how the net profit is likely to be distributed in general, we can repeat
the experiment a large number of times and make a histogram of the results. The
following function computes the net profits for k different trials of n games each.

profits = @(n,k) sum(sign(0.51 - rand(n, k)))

profits =

@(n,k) sum(sign(0.51 - rand(n, k)))

What this function does is to generate an n × k matrix of random numbers and then
perform the same operations as above on each entry of the matrix to obtain a matrix
with entries 1 for bets the casino won and −1 for bets it lost. Finally it sums the
columns of the matrix to obtain a row vector of k elements, each of which represents
the total profit from a column of n bets.
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Now we make a histogram of the output of profits using n = 100 and k = 100.
Theoretically the casino could win or lose up to 100 units, but in practice we find
that the outcomes are almost always within 30 or so of 0. Thus we let the bins of the
histogram range from −40 to 40 in increments of 2 (since the net profit is always even
after 100 bets).

hist(profits(100, 100), -40:2:40); axis tight
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The histogram confirms our impression that there is a wide variation in the outcomes
after 100 games. It looks like the casino is about as likely to have lost money as to have
profited. However, the distribution shown above is irregular enough to indicate that we
really should run more trials to see a better approximation to the actual distribution.
Let’s try 1000 trials.

hist(profits(100, 1000), -40:2:40); axis tight

−40 −20 0 20 40
0

10

20

30

40

50

60

70

80

According to the “Central Limit Theorem,” when both n and k are large, the histogram
should be shaped like a “bell curve,” and we begin to see this shape emerging above.
Let’s move on to 10,000 trials.

hist(profits(100, 10000), -40:2:40); axis tight
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Here we see very clearly the shape of a bell curve. Though we haven’t gained that
much in terms of knowing how likely the casino is to be behind after 100 games, and
how large its net loss is likely to be in that case, we do gain confidence that our results
after 1000 trials are a good depiction of the distribution of possible outcomes.

Now we consider the net profit after 1000 games. We expect on average the casino to
win 510 games and the player(s) to win 490, for a net profit of 20 units. Let’s start
with 1000 trials.

hist(profits(1000, 1000), -100:10:150); axis tight
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Though the range of values we observe for the profit after 1000 games is larger than
the range for 100 games, the range of possible values is ten times as large, so that
relatively speaking the outcomes are closer together than before. This reflects the
theoretical principle (also a consequence of the Central Limit Theorem) that the aver-
age “spread” of outcomes after a large number of trials should be proportional to the
square root of the number n of games played in each trial. This is important for the
casino, since if the spread were proportional to n, then the casino could never be too
sure of making a profit. When we increase n by a factor of 10, the spread should only
increase by a factor of

√
10, or a little more than 3.
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Notice that, after 1000 games, the casino is definitely more likely to be ahead than
behind. However, the chances of being behind still look sizable. Let’s repeat the sim-
ulation with 10,000 trials to be more certain of our results. We might be tempted to
type hist(profits(1000, 10000), -100:10:150), but notice that this
involves an array of 10 million numbers. While most computers can now store this
many numbers in memory, using this much memory can slow MATLAB down. Gen-
erally we find that it is best not to go too far over a million numbers in an array when
possible, and on our computers it is quicker in this instance to perform the 10,000
trials in batches of 1000, using a loop to assemble the results into a single vector.

profitvec = [];
for j = 1:10

profitvec = [profitvec profits(1000, 1000)];
end
hist(profitvec, -100:10:150); axis tight
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We see the bell-curve shape emerging again. Though it is unlikely, the chance that the
casino is behind by more than 50 units after 1000 games is not insignificant. If each
unit is worth $1000, then we might advise the casino to have at least $100,000 cash
on hand in order to be prepared for this possibility. Maybe even that is not enough –
to see we have to experiment further.

Let’s see now what happens after 10,000 games. We expect on average the casino
to be ahead by 200 units at this point, and, on the basis of our earlier discussion, the
range of values we use to make the histogram need go up only by a factor of three
or so from the previous case. Let’s go straight to 10,000 trials. This time we do 100
batches of 100 trials each.

profitvec = [];
for j = 1:100

profitvec = [profitvec profits(10000, 100)];
end
hist(profitvec, -200:25:600); axis tight
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It seems that turning a profit after 10,000 games is highly likely. But though the
chance of a loss is quite small at this point, it is not negligible; more than 1% of the
trials resulted in a loss, and sometimes the loss was more than 100 units. However,
the overall trend toward profitability seems clear, and we expect that after 100,000
games the casino is overwhelmingly likely to have made a profit. On the basis of our
previous observations of the growth of the spread of outcomes, we expect that most
of the time the net profit will be within 1000 of the expected value of 2000. Since
10,000 trials of 10,000 games each took a while to run, we’ll do only 1000 trials this
time.

profitvec = [];
for j = 1:100

profitvec = [profitvec profits(100000, 10)];
end
hist(profitvec, 500:100:3500); axis tight
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The results are consistent with our projections. The casino seems almost certain to
have made a profit after 100,000 games, but it should have reserves of several hundred
betting units on hand in order to cover the possible losses along the way.
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Population Dynamics

We are going to look at two models for population growth of a species. The first is
a standard exponential growth/decay model that describes quite well the population
of a species becoming extinct, or the short-term behavior of a population growing in
an unchecked fashion. The second, more realistic, model describes the growth of a
species subject to constraints of space, food supply, and competitors/predators.

Exponential Growth/Decay

We assume that the species starts with an initial population P0. The population after n
time units is denoted Pn. Suppose that, in each time interval, the population increases
or decreases by a fixed proportion of its value at the beginning of the interval. Thus

Pn+1 = Pn + rPn, n ≥ 0.

The constant r represents the difference between the birth rate and the death rate. The
population increases if r is positive, decreases if r is negative, and remains fixed if
r = 0.

Here is a simple M-file that we will use to compute the population at stage n, given
the population at the previous stage and the rate r.

type itseq

function X = itseq(f, Xinit, n, r)
% Computes an iterative sequence of values.
X = zeros(n + 1, 1);
X(1) = Xinit;
for k = 1:n

X(k + 1) = f(X(k), r);
end

In fact, this is a simple program for computing iteratively the values of a sequence
xk+1 = f(xk, r), n ≥ 0, given any function f , the value of its parameter r, and the
initial value x0 of the sequence.

Now let’s use the program to compute two populations at 5-year intervals for r = 0.1
and then r = −0.1:

Xinit = 100; f = @(x, r) x*(1 + r);
X = itseq(f, Xinit, 100, 0.1);
format long; X(1:5:101)
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ans =

1.0e+06 *

0.00010000000000
0.00016105100000
0.00025937424601
0.00041772481694
0.00067274999493
0.00108347059434
0.00174494022689
0.00281024368481
0.00452592555682
0.00728904836851
0.01173908528797
0.01890591424713
0.03044816395414
0.04903707252979
0.07897469567994
0.12718953713951
0.20484002145855
0.32989690295921
0.53130226118483
0.85566760466078
1.37806123398224

X = itseq(f, Xinit, 100, -0.1); X(1:5:101)

ans =

1.0e+02 *

1.00000000000000
0.59049000000000
0.34867844010000
0.20589113209465
0.12157665459057
0.07178979876919
0.04239115827522
0.02503155504993
0.01478088294143
0.00872796356809
0.00515377520732
0.00304325272217
0.00179701029991
0.00106111661200
0.00062657874822
0.00036998848504
0.00021847450053
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0.00012900700782
0.00007617734805
0.00004498196225
0.00002656139889

In the first case, the population is growing rapidly; in the second, decaying rapidly. In
fact, it is clear from the model that, for any n, the quotient Pn/Pn+1 = (1 + r), and
therefore it follows that Pn = P0(1 + r)n, n ≥ 0. This accounts for the expression
“exponential growth/decay.” The model predicts a population growth without bound
(for growing populations), and is therefore not realistic. Our next model allows for
a check on the population caused by limited space, limited food supply, competitors,
and predators.

Logistic Growth

The previous model assumes that the relative change in population is constant, that is

(Pn+1 − Pn)/Pn = r.

Now let’s build in a term that holds down the growth, namely

(Pn+1 − Pn)/Pn = r − uPn.

We shall simplify matters by assuming that u = 1 + r, so that our recursion relation
becomes

Pn+1 = uPn(1 − Pn),

where u is a positive constant. In this model, the population P is constrained to lie
between 0 and 1, and should be interpreted as a percentage of a maximum possible
population in the environment in question. So let us define the function we will use
in the iterative procedure:

f = @(x, u) u*x*(1 - x);

Now let’s compute a few examples, and use plot to display the results.

Xinit = 0.5; X = itseq(f, Xinit, 20, 0.5); plot(X)
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X = itseq(f, Xinit, 20, 1); plot(X)
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X = itseq(f, Xinit, 20, 1.5); plot(X)
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X = itseq(f, Xinit, 20, 3.4); plot(X)
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In the first computation, we have used our iterative program to compute the population
density for 20 time intervals, assuming a logistic growth constant u = 0.5, and an
initial population density of 50%. The population seems to be dying out. In the
remaining examples, we kept the initial population density at 50%; the only thing
we varied was the logistic growth constant. In the second example, with a growth
constant u = 1, once again the population is dying out – although more slowly. In the
third example, with a growth constant of 1.5 the population seems to be stabilizing at
33.3...%. Finally, in the last example, with a constant of 3.4 the population seems to
oscillate between densities of approximately 45% and 84%.

These examples illustrate the remarkable features of the logistic population dynamics
model. This model has been studied for more than 150 years, its origins lying in an
analysis by the Belgian mathematician Verhulst. Here are some of the facts associated
with this model. We will corroborate some of them with MATLAB. In particular, we
shall use bar as well as plot to display some of the data.

• The logistic constant cannot be larger than 4.

In order for the model to work, the output at any point must be between 0 and 1. But
the parabola ux(1 − x), for 0 ≤ x ≤ 1, has its maximum height when x = 1/2,
where its value is u/4. To keep that number between 0 and 1, we must restrict u ≤ 4.
Here is what happens if u is greater than 4:

X = itseq(f, 0.5, 10, 4.5)

X =

1.0e+173 *

0.00000000000000
0.00000000000000

-0.00000000000000
-0.00000000000000
-0.00000000000000
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-0.00000000000000
-0.00000000000000
-0.00000000000000
-0.00000000000000
-0.00000000000000
-8.31506542713596

• If 0 ≤ u ≤ 1, the population density tends to zero for any initial value.

X = itseq(f, 0.5, 100, 0.8); X(101)

ans =

2.420473970178059e-11

X = itseq(f, 0.5, 20, 1); bar(X)
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• If 1 < u ≤ 3, the population will stabilize at density 1 − 1/u for any initial
density other than zero.

The third of the original four examples corroborates the assertion (with u = 1.5 and
1 − 1/u = 1/3). In the following examples, we set u = 2, 2.5, and 3, respectively,
so that 1 − 1/u equals 0.5, 0.6, and 0.666 . . ., respectively. The convergence in
the last computation is rather slow (as one might expect from a boundary case – or
“bifurcation point”).

X = itseq(f, 0.25, 100, 2); X(101)

ans =

0.50000000000000
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X = itseq(f, 0.75, 100, 2); X(101)

ans =

0.50000000000000

X = itseq(f, 0.5, 20, 2.5);
plot(X)
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X = itseq(f, 0.5, 100, 3);
bar(X); axis([0 100 0 0.8])
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• If 3 < u < 3.56994 . . ., then there is a periodic cycle.

The theory is quite subtle. For a fuller explanation, the reader may consult Encoun-
ters with Chaos, by Denny Gulick, McGraw-Hill, New York, 1992, Section 1.5. In
fact there is a sequence

u0 = 3 < u1 = 1 +
√

6 < u2 < u3 < · · · < 4,
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such that between u0 and u1 there is a cycle of period 2; between u1 and u2 there
is cycle of period 4; and in general, between uk and uk+1 there is a cycle of period
2k+1. In fact one knows that, at least for small k, one has the approximation uk+1 ≈
1 +

√
3 + uk. So:

u1 = 1 + sqrt(6)

u1 =

3.44948974278318

u2approx = 1 + sqrt(3 + u1)

u2approx =

3.53958456106175

This explains the oscillatory behavior we saw in the last of the original four examples
(with u0 < u = 3.4 < u1). Here is the behavior for u1 < u = 3.5 < u2. The
command bar is particularly effective here for spotting the cycle of order 4.

X = itseq(f, 0.75, 100, 3.5);
bar(X); axis([0 100 0 0.9])
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• There is a value u < 4 beyond which – chaos!

It is possible to prove that the sequence uk tends to a limit u∞. The value of u∞,
sometimes called the “Feigenbaum parameter,” is approximately 3.56994 . . .. Let’s
see what happens if we use a value of u between the Feigenbaum parameter and 4.

X = itseq(f, 0.75, 100, 3.7);
plot(X); axis([0 100 0 1])
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This is an example of what mathematicians call a “chaotic” phenomenon! It is not
random – the sequence was generated by a precise, fixed mathematical procedure,
but the results manifest no discernible pattern. Chaotic phenomena are unpredictable,
but with modern methods (including computer analysis), mathematicians have been
able to identify certain patterns of behavior in chaotic phenomena. For example,
the last figure suggests the possibility of unstable periodic cycles and other recurring
phenomena. Indeed a great deal of information is known. The aforementioned book
by Gulick is a fine reference, as well as the source of an excellent bibliography on the
subject.

Re-running the Model with Simulink

The logistic growth model that we have been exploring lends itself particularly well
to simulation using Simulink. Here is a simple Simulink model that corresponds to
the above calculations:

open_system popdyn

z

1

Unit Delay

Scope

Pulse
Generator

Product

3.4 Logistic
Constant

1 1
u

1−x

x

x

Let’s briefly explain how this works. If you ignore the Pulse Generator block and the
Sum block in the lower left for a moment, this model implements the equation

x at next time = ux(1 − x) at current time,



Population Dynamics 159

which is the equation for the logistic model. The Scope block displays a plot of x
as a function of (discrete) time. However, we need somehow to build in the initial
condition for x. The simplest way to do this is as illustrated here: we add to the
right-hand side a discrete pulse that is the initial value of x (here we use 0.5) at time
t = 0 and is 0 thereafter. Since the model is discrete, you can achieve this by setting
the Pulse Generator block to “Sample based” mode, setting the period of the pulse to
something longer than the length of the simulation, setting the width of the pulse to 1,
and setting the amplitude of the pulse to the initial value of x. The outputs from the
model in the two interesting cases of u = 3.4 and u = 3.7 are shown here:

[t, x] = sim(’popdyn’, [0 120]);
simplot(t, x); title(’u = 3.4’)
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In the first case of u = 3.4, the periodic behavior is clearly visible.

set_param(’popdyn/Logistic Constant’, ’Value’, ’3.7’)
[t, x] = sim(’popdyn’, [0 120]);
simplot(t, x); title(’u = 3.7’)
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On the other hand, when u = 3.7, we get chaotic behavior.

Linear Economic Models

MATLAB’s linear algebra capabilities make it a good vehicle for studying linear eco-
nomic models, sometimes called “Leontief models” (after their primary developer,
Nobel Prize-winning economist Wassily Leontief) or “input-output models.” We will
give a few examples. The simplest such model is the “linear exchange model” or
“closed Leontief model” of an economy. This model supposes that an economy is di-
vided into, say, n sectors, such as agriculture, manufacturing, service, consumers, etc.
Each sector receives input from the various sectors (including itself) and produces an
output, which is divided among the various sectors. (For example, agriculture pro-
duces food for home consumption and for export, but also seeds and new livestock
which are reinvested in the agricultural sector, as well as chemicals that may be used
by the manufacturing sector, and so on.) The meaning of a closed model is that total
production is equal to total consumption. The economy is in equilibrium when each
sector of the economy (at least) breaks even. For this to happen, the prices of the
various outputs have to be adjusted by market forces. Let aij denote the fraction of
the output of the jth sector consumed by the ith sector. Then the aij are the entries of
a square matrix, called the “exchange matrix” A, each of whose columns sums to 1.
Let pi be the price of the output of the ith sector of the economy. Since each sector is
to break even, pi cannot be smaller than the value of the inputs consumed by the ith
sector, or in other words,

pi ≥
∑

j

aijpj .

But, on summing over i and using the fact that

∑
i

aij = 1,

we see that the two sides must be equal. In matrix language, that means that (I −
A)p = 0, where p is the column vector of prices. Thus p is an eigenvector of A for
the eigenvalue 1, and the theory of stochastic matrices implies (assuming that A is
“irreducible,” meaning that there is no proper subset E of the sectors of the economy
such that outputs from E all stay inside E) that p is uniquely determined up to a scalar
factor. In other words, a closed irreducible linear economy has an essentially unique
equilibrium state. For example, if we have

A = [0.3, 0.1, 0.05, 0.2; 0.1, 0.2, 0.3, 0.3; ...
0.3, 0.5, 0.2, 0.3; 0.3, 0.2, 0.45, 0.2]
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A =

0.3000 0.1000 0.0500 0.2000
0.1000 0.2000 0.3000 0.3000
0.3000 0.5000 0.2000 0.3000
0.3000 0.2000 0.4500 0.2000

then, as required,

sum(A)

ans =

1 1 1 1

that is, all the columns sum to 1, and

[V, D] = eig(A); D(1, 1)
p = V(:, 1)

ans =

1.0000

p =

0.2739
0.4768
0.6133
0.5669

shows that 1 is an eigenvalue of A with price eigenvector p as shown.

Somewhat more realistic is the (static, linear) open Leontief model of an economy,
which takes labor, consumption, etc., into account. Let’s illustrate with an exam-
ple. The following command inputs an actual input-output transactions table for the
economy of the United Kingdom in 1963. (This table is taken from Input-Output
Analysis and its Applications by R. O’Connor and E. W. Henry, Hafner Press, New
York, 1975.) Tables such as this one can be obtained from official government statis-
tics. The table T is a 10 × 9 matrix. Units are millions of British pounds. The
rows represent, respectively, agriculture, industry, services, total inter-industry, im-
ports, sales by final buyers, indirect taxes, wages and profits, total primary inputs,
and total inputs. The columns represent, respectively, agriculture, industry, services,
total inter-industry, consumption, capital formation, exports, total final demand, and
output. Thus outputs from each sector can be read off along a row, and inputs into a
sector can be read off along a column.
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T = [ 277 444 14 735 1123 35 51 1209 1944; ...
587 11148 1884 13619 8174 4497 3934 16605 30224; ...
236 2915 1572 4723 11657 430 1452 13539 18262; ...
1100 14507 3470 19077 20954 4962 5437 31353 50430; ...
133 2844 676 3653 1770 250 273 2293 5946; ...
3 134 42 179 -90 -177 88 -179 0; ...

-246 499 442 695 2675 100 17 2792 3487; ...
954 12240 13632 26826 0 0 0 0 26826; ...
844 15717 14792 31353 4355 173 378 4906 36259; ...
1944 30224 18262 50430 25309 5135 5815 36259 86689];

A few features of this matrix are apparent from the following:

T(4, :) - T(1, :) - T(2, :) - T(3, :)
T(9, :) - T(5, :) - T(6, :) - T(7, :) - T(8, :)
T(10, :) - T(4, :) - T(9, :)
T(10, 1:4) - T(1:4, 9)’

ans =

0 0 0 0 0 0 0 0 0

ans =

0 0 0 0 0 0 0 0 0

ans =

0 0 0 0 0 0 0 0 0

ans =

0 0 0 0

Thus the fourth row, which summarizes inter-industry inputs, is the sum of the first
three rows; the ninth row, which summarizes “primary inputs,” is the sum of rows 5
through 8; the tenth row, total inputs, is the sum of rows 4 and 9, and the first four
entries of the last row agree with the first four entries of the last column (meaning that
all output from the industrial sectors is accounted for). Also we have:

(T(:, 4) - T(:, 1) - T(:, 2) - T(:, 3))’
(T(:, 8) - T(:, 5) - T(:, 6) - T(:, 7))’
(T(:, 9) - T(:, 4) - T(:, 8))’

ans =
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0 0 0 0 0 0 0 0 0 0

ans =

0 0 0 0 0 0 0 0 0 0

ans =

0 0 0 0 0 0 0 0 0 0

so the fourth column, representing total inter-industry output, is the sum of columns 1
through 3; the eighth column, representing total “final demand,” is the sum of columns
5 through 7; and the ninth column, representing total output, is the sum of columns 4
and 8. The matrix A of “inter-industry technical coefficients” is obtained by dividing
the columns of T corresponding to industrial sectors (in our case there are three of
these) by the corresponding total inputs. Thus we have:

A = [T(:, 1)/T(10, 1), T(:, 2)/T(10, 2), T(:, 3)/T(10, 3)]

A =

0.1425 0.0147 0.0008
0.3020 0.3688 0.1032
0.1214 0.0964 0.0861
0.5658 0.4800 0.1900
0.0684 0.0941 0.0370
0.0015 0.0044 0.0023
-0.1265 0.0165 0.0242
0.4907 0.4050 0.7465
0.4342 0.5200 0.8100
1.0000 1.0000 1.0000

Here the square upper block (the first three rows) is most important, so we make the
replacement

A = A(1:3, :)

A =

0.1425 0.0147 0.0008
0.3020 0.3688 0.1032
0.1214 0.0964 0.0861

If the vector Y represents total final demand for the various industrial sectors, and the
vector X represents total outputs for these sectors, then the fact that the last column
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of T is the sum of columns 4 (total inter-industry outputs) and 8 (total final demand)
translates into the matrix equation

X = AX + Y, or Y = (1 − A)X.

Let’s check this:

Y = T(1:3, 8); X = T(1:3, 9); Y - (eye(3) - A)*X

ans =

0
0
0

Now one can do various numerical experiments. For example, what would be the
effect on output of an increase of £10 billion (10,000 in the units of our problem)
in final demand for industrial output, with no corresponding increase in demand for
services or for agricultural products? Since the economy is assumed to be linear, the
change ∆X in X is obtained by solving the linear equation

∆Y = (1 − A)∆X,

and

deltaX = (eye(3) - A) \ [0; 10000; 0]

deltaX =

1.0e+04 *

0.0280
1.6265
0.1754

Thus agricultural output would increase by £280 million, industrial output would in-
crease by £16.265 billion, and service output would increase by £1.754 billion. We
can illustrate the result of doing this for similar increases in demand for the other
sectors with the following pie charts:

deltaX1 = (eye(3) - A) \ [10000; 0; 0];
deltaX2 = (eye(3) - A) \ [0; 0; 10000];
subplot(1, 3, 1), pie(deltaX1, {’Ag.’, ’Ind.’, ’Serv.’})
subplot(1, 3, 2), pie(deltaX, {’Ag.’, ’Ind.’, ’Serv.’})
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title([’Effect of increases in demand for each of the ’ ...
’3 sectors’], ’FontSize’, 13)

subplot(1, 3, 3), pie(deltaX2, {’Ag.’, ’Ind.’, ’Serv.’})
colormap(gray)

Ag.
Ind.

Serv. Ag.

Ind.

Serv.

Effect of increases in demand for each of the 3 sectors
Ag.Ind.

Serv.

Linear Programming

MATLAB is ideally suited to handle so-called linear programming problems. These
are problems in which you have a quantity, depending linearly on several variables,
that you want to maximize or minimize subject to several constraints that are ex-
pressed as linear inequalities in the same variables. If the number of variables and the
number of constraints are small, then there are numerous mathematical techniques
for solving a linear programming problem – indeed, these techniques are often taught
in high-school or university-level courses in finite mathematics. But sometimes these
numbers are high, or, even if they are low, the constants in the linear inequalities or the
object expression for the quantity to be optimized may be numerically complicated –
in which case a software package like MATLAB is required to effect a solution. We
shall illustrate the method of linear programming by means of a simple example, giv-
ing a combined graphical/numerical solution, and then solve both a slightly as well as
a substantially more complicated problem.

Suppose that a farmer has 75 acres on which to plant two crops: wheat and barley.
To produce these crops, it costs the farmer (for seed, fertilizer, etc.) $120 per acre
for the wheat and $210 per acre for the barley. The farmer has $15,000 available
for expenses. But after the harvest, the farmer must store the crops while awaiting
favorable market conditions. The farmer has storage space for 4000 bushels. Each
acre yields an average of 110 bushels of wheat or 30 bushels of barley. If the net
profit per bushel of wheat (after all expenses have been subtracted) is $1.30 and for
barley is $2.00, how should the farmer plant the 75 acres to maximize profit?

We begin by formulating the problem mathematically. First we express the objective,
that is the profit, and the constraints algebraically, then we graph them, and lastly we
arrive at the solution by graphical inspection and a minor arithmetic calculation.

Let x denote the number of acres allotted to wheat and y the number of acres allotted
to barley. Then the expression to be maximized, that is the profit, is clearly

P = (110)(1.30)x + (30)(2.00)y = 143x + 60y.
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There are three constraint inequalities, specified by the limits on expenses, storage,
and acreage. They are, respectively,

120x + 210y ≤ 15000,

110x + 30y ≤ 4000,

x + y ≤ 75.

Strictly speaking there are two more constraint inequalities forced by the fact that the
farmer cannot plant a negative number of acres, namely

x ≥ 0, y ≥ 0.

Next we graph the regions specified by the constraints. The last two say that we need
to consider only the first quadrant in the x-y plane. Here’s a graph delineating the
triangular region in the first quadrant determined by the first inequality.

X = 0:125;
Y1 = (15000 - 120.*X)./210;
area(X, Y1)
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Now let’s put in the other two constraint inequalities.

Y2 = max((4000 - 110.*X)./30, 0);
Y3 = max(75 - X, 0);
Ytop = min([Y1; Y2; Y3]);
area(X, Ytop)
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It’s a little hard to see the polygonal boundary of the region clearly. Let’s home in a
bit.

area(X, Ytop); axis([0 40 40 75])
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Now let’s superimpose on top of this picture a contour plot of the objective function
P .

hold on
[U V] = meshgrid(0:40, 40:75);
contour(U, V, 143.*U + 60.*V); hold off
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It seems apparent that the maximum value of P will occur on the level curve (that is,
level line) that passes through the vertex of the polygon that lies near (22, 53). In fact
we can compute

[x, y] = solve(’x + y = 75’, ’110*x + 30*y = 4000’)

x =

175/8

y =

425/8

double([x, y])

ans =

21.8750 53.1250

The acreage that results in the maximum profit is 21.875 for wheat and 53.125 for
barley. In that case the profit is

P = 143*x + 60*y

P =

50525/8
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format bank; double(P)

ans =

6315.62

that is, $6,315.63.

This problem illustrates and is governed by the “Fundamental Theorem of Linear
Programming,” which is stated here for two variables: a linear expression ax + by,
defined over a closed bounded convex set S whose sides are line segments, takes on
its maximum and minimum values at vertices of S. If S is unbounded, there might
but need not be an optimum value, but if there is, it occurs at a vertex. (A convex set
is one for which any line segment joining two points of the set lies entirely inside the
set.)

In fact the Simulink Toolbox has a built-in function, simlp, that implements the
solution of a linear programming problem. The Optimization Toolbox has an almost
identical function called linprog. You can learn about either one from the online
help. We will use simlp on the above problem. After that we will use it to solve
two more complicated problems involving more variables and constraints. Here is the
beginning of its help text.

helptext = help(’simlp’); helptext(1:190)

ans =

SIMLP Helper function for GETXO; solves linear programming problem.
X=SIMLP(f,A,b) solves the linear programming problem:

min f’x subject to: Ax <= b
x

So

f = [-143 -60];
A = [120 210; 110 30; 1 1; -1 0; 0 -1];
b = [15000; 4000; 75; 0; 0];

format short; simlp(f, A, b)

ans =

21.8750
53.1250
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This is the same answer that we obtained before. Note that we entered the negative of
the coefficients for the objective function P into the vector f because simlp searches
for a minimum rather than a maximum. Note also that the non-negativity constraints
are accounted for in the last two rows of A and b.

Well, we could have done this problem by hand. But suppose that the farmer is dealing
with a third crop, say corn, and that the corresponding data are

• Cost per acre: $150.75,
• Yield per acre: 125 bushels,
• Profit per bushel: $1.56.

If we denote the number of acres allotted to corn by z, then the objective function
becomes

P = (110)(1.30)x + (30)(2.00)y + (125)(1.56) = 143x + 60y + 195z,

and the constraint inequalities are

120x + 210y + 150.75z ≤ 15000,

110x + 30y + 125z ≤ 4000,

x + y + z ≤ 75,

x ≥ 0, y ≥ 0, z ≥ 0.

The problem is solved with simlp as follows:

f = [-143 -60 -195];
A = [120 210 150.75; 110 30 125; 1 1 1; -1 0 0; ...

0 -1 0; 0 0 -1];
b = [15000; 4000; 75; 0; 0; 0];

simlp(f, A, b)

ans =

0
56.5789
18.4211

So the farmer should ditch the wheat and plant 56.5789 acres of barley and 18.4211
acres of corn.

There is no practical limit on the number of variables and constraints that MATLAB
can handle – certainly none that the relatively unsophisticated user will encounter.
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Indeed, in many real applications of the technique of linear programming, one needs
to deal with many variables and constraints. The solution of such a problem by hand
is not feasible, and software like MATLAB is crucial to success. For example, in the
farming problem with which we have been working, one could have more crops than
two or three – think agribusiness instead of family farmer. Also one could have con-
straints that arise from other things beside expenses, storage, and acreage limitations
– for example the following.

• Availability of seed. This might lead to constraint inequalities like xj ≤ k.
• Personal preferences. Thus the farmer’s spouse might have a preference for

one variety over another and insist on a corresponding planting, or something
similar with a collection of crops; thus constraint inequalities like xi ≤ xj or
x1 + x2 ≥ x3.

• Government subsidies. It may take a moment’s reflection on the reader’s part,
but this could lead to inequalities like xj ≥ k.

Below is a sequence of commands that solves exactly such a problem. You should be
able to recognize the objective expression and the constraints from the data that are
entered. But as an aid, you might answer the following questions.

• How many crops are under consideration?
• What are the corresponding expenses? How much is available for expenses?
• What are the yields in each case? What is the storage capacity?
• How many acres are available?
• What crops are constrained by seed limitations? To what extent?
• What about preferences?
• What are the minimum acreages for each crop?

f = [-110*1.3 -30*2.0 -125*1.56 -75*1.8 -95*.95 ...
-100*2.25 -50*1.35];

A = [120 210 150.75 115 186 140 85; ...
110 30 125 75 95 100 50; 1 1 1 1 1 1 1; 1 0 0 0 0 0 0; ...
0 0 1 0 0 0 0; 0 0 0 0 0 1 0; 1 -1 0 0 0 0 0; ...
0 0 1 0 -2 0 0; 0 0 0 -1 0 -1 1; -1 0 0 0 0 0 0; ...
0 -1 0 0 0 0 0; 0 0 -1 0 0 0 0; 0 0 0 -1 0 0 0; ...
0 0 0 0 -1 0 0; 0 0 0 0 0 -1 0; 0 0 0 0 0 0 -1];

b = [55000; 40000; 400; 100; 50; 250; 0; 0; 0; -10; -10; ...
-10; -10; -20; -20; -20];

simlp(f, A, b)

ans =

10.0000
10.0000
40.0000
45.6522
20.0000
250.0000
20.0000
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Note that, despite the complexity of the problem, MATLAB solves it almost instanta-
neously. It seems the farmer should bet the farm on crop number 6. We suggest that
you alter the expense and/or the storage limit in the problem and see what effect that
has on the answer.

The 360◦ Pendulum

Normally we think of a pendulum as a weight suspended by a flexible string or cable,
so that it may swing back and forth. Another type of pendulum consists of a weight
attached by a light (but inflexible) rod to an axle, so that it can swing through larger
angles, even making a 360◦ rotation if given enough velocity.

Equations of Motion

Though it is not precisely correct in practice, we often assume that the magnitude of
the frictional forces that eventually slow the pendulum to a halt is proportional to the
velocity of the pendulum. Assume also that the length of the pendulum is 1 m, the
weight at the end of the pendulum has mass 1 kg, and the coefficient of friction is 0.5.
In that case, the equations of motion for the pendulum are as follows.

x′(t) = y(t), y′(t) = −0.5y(t) − 9.81 sin(x(t)),

where t represents time in seconds, x represents the angle of the pendulum from the
vertical in radians (so that x = 0 is the rest position), y represents the angular velocity
of the pendulum in radians per second, and 9.81 is approximately the acceleration due
to gravity in meters per second squared. Now here is a phase portrait of the solution
with initial position x(0) = 0 and initial velocity y(0) = 5. This is a graph of x versus
y as a function of t, on the time interval 0 < t < 20. (To use MATLAB’s numerical
differential-equation solver ode45, we combine x and y into a single vector x; see
the online help for ode45.)

g = @(t, x) [x(2); -0.5*x(2) - 9.81*sin(x(1))];
[t, xa] = ode45(g, [0:0.01:20], [0 5]);
plot(xa(:, 1), xa(:, 2))
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Recall that the x-coordinate corresponds to the angle of the pendulum and the y-
coordinate corresponds to its velocity. Starting at (0, 5), as t increases we follow the
curve as it spirals clockwise toward (0, 0). The angle oscillates back and forth, but
with each swing it gets smaller until the pendulum is virtually at rest by the time
t = 20. Meanwhile the velocity oscillates as well, taking its maximum value during
each oscillation when the pendulum is in the middle of its swing (the angle is near
zero) and crossing zero when the pendulum is at the end of its swing.

A Higher Initial Velocity

We increase the initial velocity to 10.

[t, xa] = ode45(g, [0:0.01:20], [0 10]);
plot(xa(:,1), xa(:,2))
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This time the angle increases to over 14 radians before the curve spirals in to a point
near (12.5, 0). More precisely, it spirals toward (4π, 0), because 4π radians represents
the same position for the pendulum as 0 radians does. The pendulum has swung
overhead and made two complete revolutions before beginning its damped oscillation
toward its rest position. The velocity at first decreases but then rises after the angle
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passes through π, as the pendulum passes the upright position and gains momentum.
The pendulum has just enough momentum to swing through the upright position once
more at the angle 3π.

Finding the Initial Velocity that Causes the Pendulum to Swing Overhead

Suppose that we want to find, to within 0.1, the minimum initial velocity required to
make the pendulum, starting from its rest position, swing overhead once. It will be
useful to be able to see the solutions corresponding to several different initial veloci-
ties on one graph.

First we consider the integer velocities 5 to 10.

hold on
for a = 5:10

[t, xa] = ode45(g, [0:0.01:20], [0 a]);
plot(xa(:, 1), xa(:, 2))

end
hold off
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Initial velocities 5, 6, and 7 are not large enough for the angle to increase past π, but
initial velocities 8, 9, and 10 are enough to make the pendulum swing overhead. Let’s
see what happens between 7 and 8.

Second Iteration

hold on
for a = 7.0:0.2:8.0

[t, xa] = ode45(g, [0:0.01:20], [0 a]);
plot(xa(:, 1), xa(:, 2))

end
hold off
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We see that the cut-off is somewhere between 7.2 and 7.4. Let’s make one more
refinement.

Third Iteration

hold on
for a = 7.2:0.05:7.4

[t, xa] = ode45(g, [0:0.01:20], [0 a]);
plot(xa(:, 1), xa(:, 2))

end
hold off
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We conclude that the minimum velocity needed is somewhere between 7.25 and 7.3.

✰ Numerical Solution of the Heat Equation

In this section we will use MATLAB to numerically solve the heat equation (also
known as the diffusion equation), a partial differential equation that describes many
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physical processes such as conductive heat flow or the diffusion of an impurity in a
motionless fluid. You can picture the process of diffusion as a drop of dye spreading
in a glass of water. (To a certain extent you could also picture cream in a cup of cof-
fee, but in that case the mixing is generally complicated by the fluid motion caused
by pouring the cream into the coffee, and is further accelerated by stirring the coffee.)
The dye consists of a large number of individual particles, each of which repeatedly
bounces off the surrounding water molecules, following an essentially random path.
There are so many dye particles that their individual random motions form an es-
sentially deterministic overall pattern as the dye spreads evenly in all directions (we
ignore here the possible effect of gravity). In a similar way, you can imagine heat
energy spreading through random interactions of nearby particles.

In a three-dimensional medium, the heat equation is

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
.

Here u is a function of t, x, y, and z that represents the temperature, or concentration
of impurity in the case of diffusion, at time t at position (x, y, z) in the medium. The
constant k depends on the materials involved, and is called the thermal conductivity
in the case of heat flow, and the diffusion coefficient in the case of diffusion. To
simplify matters, let us assume that the medium is instead one-dimensional. This
could represent diffusion in a thin water-filled tube or heat flow in a thin insulated
wire; let us think primarily of the case of heat flow. Then the partial differential
equation becomes

∂u

∂t
= k

∂2u

∂x2
,

where u(x, t) is the temperature at time t a distance x along the wire.

A Finite-Difference Solution

To solve this partial differential equation we need both initial conditions of the form
u(x, 0) = f(x), where f(x) gives the temperature distribution in the wire at time 0,
and boundary conditions at the endpoints of the wire, call them x = a and x = b.
We choose so-called Dirichlet boundary conditions u(a, t) = Ta and u(b, t) = Tb,
which correspond to the temperature being held steady at values Ta and Tb at the
two endpoints. Though an exact solution is available in this scenario, let us instead
illustrate the numerical method of finite differences.

To begin with, on the computer we can keep track of the temperature u only
at a discrete set of times and a discrete set of positions x. Let the times be
0, ∆t, 2∆t, . . . , N∆t, and let the positions be a, a + ∆x, . . . , a + J∆x = b, and
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let un
j = u(a + j∆t, n∆t). After rewriting the partial differential equation in terms

of finite-difference approximations to the derivatives, we get

un+1
j − un

j

∆t
= k

un
j+1 − 2un

j + un
j−1

∆x2
.

(These are the simplest approximations we can use for the derivatives, and this method
can be refined by using more accurate approximations, especially for the t derivative.)
Thus if, for a particular n, we know the values of un

j for all j, we can solve the
equation above to find for each j,

un+1
j = un

j +
k∆t

∆x2
(un

j+1 − 2un
j + un

j−1) = s(un
j+1 + un

j−1) + (1 − 2s)un
j ,

where s = k∆t/(∆x)2. In other words, this equation tells us how to find the tem-
perature distribution at time step n + 1 given the temperature distribution at time step
n. (At the endpoints j = 0 and j = J , this equation refers to temperatures outside
the prescribed range for x, but at these points we will ignore the equation above and
apply the boundary conditions instead.) We can interpret this equation as saying that
the temperature at a given location at the next time step is a weighted average of its
temperature and the temperatures of its neighbors at the current time step. In other
words, in time ∆t, a given section of the wire of length ∆x transfers to each of its
neighbors a portion s of its heat energy and keeps the remaining portion 1− 2s. Thus
our numerical implementation of the heat equation is a discretized version of the mi-
croscopic description of diffusion we gave initially, that heat energy spreads due to
random interactions between nearby particles.

The following M-file, which we have named heat.m, iterates the procedure de-
scribed above.

type heat

function u = heat(k, t, x, init, bdry)
% Solve the 1D heat equation on the rectangle described by
% vectors x and t with initial condition u(t(1), x) = init
% and Dirichlet boundary conditions u(t, x(1)) = bdry(1),
% u(t, x(end)) = bdry(2).

J = length(x);
N = length(t);
dx = mean(diff(x));
dt = mean(diff(t));
s = k*dt/dxˆ2;

u = zeros(N,J);
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u(1,:) = init;

for n = 1:N-1
u(n+1,2:J-1) = s*(u(n,3:J) + u(n,1:J-2)) + ...

(1-2*s)*u(n,2:J-1);
u(n+1,1) = bdry(1);
u(n+1,J) = bdry(2);

end

The function heat takes as inputs the value of k, vectors of t and x values, a vector
init of initial values (which is assumed to have the same length as x), and a vector
bdry containing a pair of boundary values. Its output is a matrix of u values. Notice
that since indices of arrays in MATLAB must start at 1, not 0, we have deviated
slightly from our earlier notation by letting n = 1 represent the initial time and j =
1 represent the left endpoint. Notice also that, in the first line following the for
statement, we compute an entire row of u, except for the first and last values, in one
line; each term is a vector of length J − 2, with the index j increased by 1 in the term
u(n,3:J) and decreased by 1 in the term u(n,1:J-2).

Let’s use the M-file above to solve the one-dimensional heat equation with k = 2 on
the interval −5 ≤ x ≤ 5 from time 0 to time 4, using boundary temperatures 15 and
25, and an initial temperature distribution of 15 for x < 0 and 25 for x > 0. You can
imagine that two separate wires of length 5 with different temperatures are joined at
time 0 at position x = 0, and each of their far ends remains in an environment that
holds it at its initial temperature. We must choose values for ∆t and ∆x; let’s try
∆t = 0.1 and ∆x = 0.5, so that there are 41 values of t ranging from 0 to 4 and 21
values of x ranging from −5 to 5.

tvals = linspace(0, 4, 41);
xvals = linspace(-5, 5, 21);
init = 20 + 5*sign(xvals);
uvals = heat(2, tvals, xvals, init, [15 25]);
surf(xvals, tvals, uvals)
xlabel x; ylabel t; zlabel u
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Here we used surf to show the entire solution u(x, t). The output is clearly unre-
alistic; notice the scale on the u-axis! The numerical solution of partial differential
equations is fraught with dangers, and instability like that seen above is a common
problem with finite-difference schemes. For many partial differential equations a
finite-difference scheme will not work at all, but for the heat equation and similar
equations it will work well with proper choice of ∆t and ∆x. One might be inclined
to think that, since our choice of ∆x was larger, it should be reduced, but in fact this
would only make matters worse. Ultimately the only parameter in the iteration we’re
using is the constant s, and one drawback of doing all the computations in an M-file
as we did above is that we do not automatically see the intermediate quantities it com-
putes. In this case we can easily calculate that s = 2(0.1)/(0.5)2 = 0.8. Notice that
this implies that the coefficient 1 − 2s of un

j in the iteration above is negative. Thus
the “weighted average” we described before in our interpretation of the iterative step
is not a true average; each section of wire is transferring more energy than it has at
each time step!

The solution to the problem above is thus to reduce the time step ∆t; for instance, if
we cut it in half, then s = 0.4, and all coefficients in the iteration are positive.

tvals = linspace(0, 4, 81);
uvals = heat(2, tvals, xvals, init, [15 25]);
surf(xvals, tvals, uvals)
xlabel x; ylabel t; zlabel u
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This looks much better! As time increases, the temperature distribution seems to
approach a linear function of x. Indeed, u(x, t) = 20 + x is the limiting “steady
state” for this problem; it satisfies the boundary conditions and it yields 0 on both
sides of the partial differential equation.

Generally speaking, it is best to understand some of the theory of partial differential
equations before attempting a numerical solution as we have done here. However, for
this particular case at least, the simple rule of thumb of keeping the coefficients of the
iteration positive yields realistic results. A theoretical examination of the stability of
this finite-difference scheme for the one-dimensional heat equation shows that indeed
any value of s between 0 and 0.5 will work, and suggests that the best value of ∆t
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to use for a given ∆x is the one that makes s = 0.25. Notice that, while we can get
more accurate results in this case by reducing ∆x, if we reduce it by a factor of 10 we
must reduce ∆t by a factor of 100 to compensate, making the computation take 1000
times as long and use 1000 times the memory!

The Case of Variable Conductivity

Earlier we mentioned that the problem we solved numerically could also be solved
analytically. The value of the numerical method is that it can be applied to similar
partial differential equations for which an exact solution is not possible or at least not
known. For example, consider the one-dimensional heat equation with a variable co-
efficient, representing an inhomogeneous material with varying thermal conductivity
k(x),

∂u

∂t
=

∂

∂x

(
k(x)

∂u

∂x

)
= k(x)

∂2u

∂x2
+ k′(x)

∂u

∂x
.

For the first derivatives on the right-hand side, we use a symmetric finite-difference
approximation, so that our discrete approximation to the partial differential equations
becomes

un+1
j − un

j

∆t
= kj

un
j+1 − 2un

j + un
j−1

∆x2
+

kj+1 − kj−1

2∆x

uj+1 − uj−1

2∆x
,

where kj = k(a + j∆x). Then the time iteration for this method is

un+1
j = sj(un

j+1 + un
j−1) + (1 − 2sj)un

j + 0.25(sj+1 − sj−1)(un
j+1 − un

j−1),

where sj = kj∆t/(∆x)2. In the following M-file, which we called heatvc.m, we
modify our previous M-file to incorporate this iteration.

type heatvc

function u = heatvc(k, t, x, init, bdry)
% Solve the 1D heat equation with variable-coefficient k
% on the rectangle described by vectors x and t with
% u(t(1), x) = init and Dirichlet boundary conditions
% u(t, x(1)) = bdry(1), u(t, x(end)) = bdry(2).

J = length(x);
N = length(t);
dx = mean(diff(x));
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dt = mean(diff(t));
s = k*dt/dxˆ2;

u = zeros(N,J);
u(1,:) = init;

for n = 1:N-1
u(n+1,2:J-1) = s(2:J-1).*(u(n,3:J) + u(n,1:J-2)) + ...

(1 - 2*s(2:J-1)).*u(n,2:J-1) + ...
0.25*(s(3:J) - s(1:J-2)).*(u(n,3:J) - u(n,1:J-2));

u(n+1,1) = bdry(1);
u(n+1,J) = bdry(2);

end

Notice that k is now assumed to be a vector with the same length as x, and that as a
result so is s. This in turn requires that we use vectorized multiplication in the main
iteration, which we have now split into three lines.

Let’s use this M-file to solve the one-dimensional variable coefficient heat equation
with the same boundary and initial conditions as before, using k(x) = 1 + (x/5)2.
Since the maximum value of k is 2, we can use the same values of ∆t and ∆x as
before.

kvals = 1 + (xvals/5).ˆ2;
uvals = heatvc(kvals, tvals, xvals, init, [15 25]);
surf(xvals, tvals, uvals)
xlabel x; ylabel t; zlabel u
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In this case the limiting temperature distribution is not linear; it has a steeper tempera-
ture gradient in the middle, where the thermal conductivity is lower. Again one could
find the exact form of this limiting distribution, u(x, t) = 20(1+(1/π) arctan(x/5)),
by setting the t derivative to zero in the original equation and solving the resulting or-
dinary differential equation.

You can use the method of finite differences to solve the heat equation in two or three
space dimensions as well. For this and other partial differential equations with time
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and two space dimensions, you can also use the PDE Toolbox, which implements the
more sophisticated “finite-element method.”

A Simulink Solution

We can also solve the heat equation using Simulink. To do this we continue to approx-
imate the x-derivatives with finite differences, but think of the equation as a vector-
valued ordinary differential equation, with t as the independent variable. Simulink
solves the model using MATLAB’s ODE solver, ode45. To illustrate how to do
this, let’s take the example we started with, the case in which k = 2 on the interval
−5 ≤ x ≤ 5 from time 0 to time 4, using boundary temperatures 15 and 25, and an
initial temperature distribution of 15 for x < 0 and 25 for x > 0. We replace u(x, t)
for fixed t by the vector u of values of u(x, t), with, say, x = -5:5. Here there
are 11 values of x at which we are sampling u, but, since u(x, t) is pre-determined at
the endpoints, we can take u to be a nine-dimensional vector, and we just tack on the
values at the endpoints when we have finished. Since we’re replacing ∂2/∂x2 by its
finite difference approximation and we’ve taken ∆x = 1 for simplicity, our equation
becomes the vector-valued ODE

∂u
∂t

= k(Au + c)

Here the right-hand side represents our approximation to k(∂2u/∂x2). The matrix A
is

⎛
⎜⎜⎜⎜⎝

−2 1 . . . 0

1 −2
. . .

...
...

. . . . . . 1
0 . . . 1 −2

⎞
⎟⎟⎟⎟⎠ ,

since we are replacing ∂2u/∂x2 at (n, t) with u(n − 1, t) − 2u(n, t) + u(n +
1, t). We represent this matrix in MATLAB’s notation by -2*eye(9) +
diag(ones(8,1), 1) + diag(ones(8,1), -1). The vector c comes
from the boundary conditions, and has 15 in its first entry, 25 in its last entry, and
0’s in between. We represent it in MATLAB’s notation as [15; zeros(7,1);
25]. The formula for c comes from the fact that u(1) represents u(−4, t), and
∂2u/∂x2 at this point is approximated by

u(−5, t) − 2u(−4, t) + u(−3, t) = 15 − 2u(1) + u(2)

and similarly at the other endpoint. Here’s a Simulink model representing this equa-
tion:
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open_system heateq.mdl

2

k

−C− boundary
conditions

Scope

1
s

Integrator

K*u

Gain

Note that one needs to specify the initial conditions for u as Block Parameters for the
Integrator block, and that in the Block Parameters dialog box for the Gain block, one
needs to set the multiplication type to “Matrix”. Since u(1) through u(4) represent
the solution u(x, t) at x = −4 through −1, and u(6) through u(9) represent u(x, t)
at x = 1 through 4, we take the initial value of u to be [15*ones(4,1); 20;
25*ones(4,1)]. (We use 20 as a compromise at x = 0, since this is right in the
middle of the regions where u is 15 and 25.) The output from the model is displayed
in the Scope block in the form of graphs of the various entries of u as a function of
t, but it’s more useful to save the output to the MATLAB Workspace and then plot it
with surf. Incidentally, it helps to reset the y-axis limits on the Scope block to run
from 15 to 25. To make this adjustment and run the model from t = 0 to t = 4, we
execute the commands

set_param(’heateq/Scope’, ’YMin’, ’15’);
set_param(’heateq/Scope’, ’YMax’, ’25’);
[tout, uout] = sim(’heateq.mdl’, [0,4]);
simplot(tout, uout)

0 1 2 3 4
15

20

25

Time

This saves the simulation times (from 0 to 4) as a vector tout and the computed
values of u as uout, a matrix with nine columns. Each row of these arrays corre-
sponds to a single time step, and each column of uout corresponds to one value of
x. But remember that we have to add in the values of u at the endpoints as additional
columns in u. So we plot the data as follows:
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u = [15*ones(length(tout),1), uout, ...
25*ones(length(tout),1)];

x = -5:5;
clf reset
set(gcf, ’Color’, ’White’)
surf(x, tout, u)
xlabel(’x’), ylabel(’t’), zlabel(’u’)
title(’Solution to heat equation in a rod’)
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Notice how similar this is to the picture obtained before for constant conductivity k =
2. We leave it to the reader to modify the model for the case of variable conductivity.

Solution with pdepe

MATLAB has a built-in solver pdepe for partial differential equations in one space
dimension (as well as time t). To find out more about it, read the online help on
pdepe. The instructions for use of pdepe are quite explicit but somewhat compli-
cated. The method it uses is somewhat similar to that used in the Simulink solution
above; i.e., it uses an ODE solver in t and finite differences in x. The following M-file
solves the second problem above, the one with variable conductivity. Note the use of
function handles and subfunctions.

type heateqex2

function heateqex2
% Solves a Dirichlet problem for the heat equation in a rod,
% this time with variable conductivity, 21 mesh points.
m = 0; % This simply means geometry is linear.
x = linspace(-5, 5, 21);
t = linspace(0, 4, 81);
sol = pdepe(m, @pdex, @pdexic, @pdexbc, x, t);
% Extract the first solution component as u.
u = sol(:,:,1);
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% A surface plot is often a good way to study a solution.
surf(x, t, u)
title(’Numerical solution computed with 21 mesh points in x’)
xlabel(’x’), ylabel(’t’), zlabel(’u’)
% ----------------------------------------------------------
function [c, f, s] = pdex(x, t, u, DuDx)
c = 1;
f = (1 + (x/5).ˆ2)*DuDx; % flux = conductivity times u_x
s = 0;
% ----------------------------------------------------------
function u0 = pdexic(x)
u0 = 20 + 5*sign(x); % initial condition at t = 0
% ----------------------------------------------------------
function [pl, ql, pr, qr] = pdexbc(xl, ul, xr, ur, t)
% q’s are zero since we have Dirichlet conditions
% pl = 0 at the left, pr = 0 at the right endpoint
pl = ul - 15;
ql = 0;
pr = ur - 25;
qr = 0;

Running it gives:

heateqex2
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Again the results are very similar to those obtained before.

✰ A Model of Traffic Flow

Everyone has had the experience of sitting in a traffic jam, or of seeing cars bunch
up on a road for no apparent good reason. MATLAB and Simulink are good tools
for studying models of such behavior. Our analysis here will be based on so-called
“follow-the-leader” theories of traffic flow, about which you can read more in Kinetic
Theory of Vehicular Traffic, by Ilya Prigogine and Robert Herman, Elsevier, New
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York, 1971, or in The Theory of Road Traffic Flow, by Winifred Ashton, Methuen,
London, 1966. We will analyze here an extremely simple model that already exhibits
quite complicated behavior. We consider a one-lane, one-way, circular road with a
number of cars on it (a very primitive model of, say, the Outer Loop of the Capital
Beltway around Washington, DC, since, in very dense traffic, it is hard to change
lanes and each lane behaves like a one-lane road). Each driver slows down or speeds
up on the basis of his own speed, the speed of the car ahead of him, and the distance to
the car ahead of him. But human drivers have a finite reaction time. In other words, it
takes them a certain amount of time (usually about a second) to observe what is going
on around them and to press the gas pedal or the brake, as appropriate. The standard
“follow-the-leader” theory supposes that

ün(t + T ) = λ
(
u̇n−1(t) − u̇n(t)

)
, (†)

where t is time, T is the reaction time, un is the position of the nth car, and the
“sensitivity coefficient” λ may depend on un−1(t)−un(t), the spacing between cars,
and/or u̇n(t), the speed of the nth car. The idea behind this equation is this. A driver
will tend to decelerate if he is going faster than the car in front of him, or if he is close
to the car in front of him, and will tend to accelerate if he is going slower than the car
in front of him. In addition, a driver (especially in light traffic) may tend to speed up
or slow down depending on whether he is going slower or faster (respectively) than
a “reasonable” speed for the road (often, but not always, equal to the posted speed
limit). Since our road is circular, in this equation u0 is interpreted as uN , where N is
the total number of cars.

The simplest version of the model is the one in which the “sensitivity coefficient” λ
is a (positive) constant. Then we have a homogeneous linear differential/difference
equation with constant coefficients for the velocities u̇n(t). Obviously there is a
“steady-state” solution when all the velocities are equal and constant (i.e., traffic is
flowing at a uniform speed), but what we are interested in is the stability of the flow,
or the question of what effect is produced by small differences in the velocities of the
cars. The solution of (†) will be a superposition of exponential solutions of the form

un(t) = exp(αt)vn,

where the vn’s and α are (complex) constants, and the system will be unstable if
the velocities are unbounded, i.e., there are any solutions where the real part of α is
positive. Using vector notation, we have

u̇(t) = exp(αt)v, ü(t + T ) = α exp(αT ) exp(αt)v.

Substituting back into (†), we get the equation
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α exp(αT ) exp(αt)v = λ(S − I) exp(αt)v,

where

S =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

is the “shift” matrix that, when it multiplies a vector on the left, cyclically permutes
the entries of the vector. We can cancel the exp(αt) on each side to get

α exp(αT )v = λ(S − I)v,

or

(
S −

(
1 +

α

λ
exp(αT )

)
I
)
v = 0, (∗∗)

which says that v is an eigenvector for S with eigenvalue

1 +
α

λ
exp(αT ).

Since the eigenvalues of S are the N th roots of unity, which are evenly spaced around
the unit circle in the complex plane, and closely spaced together for large N , there is
potential instability whenever

1 +
α

λ
exp(αT )

has absolute value 1 for some α with positive real part; that is, whenever

(
αT

λT

)
eαT

can be of the form exp(iθ)−1 for some αT with positive real part. Whether instability
occurs depends on the value of the product λT . We can see this by plotting values
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of z exp(z) for z = αT = iy a complex number on the critical line Re z = 0, and
comparing with plots of λT (eiθ − 1) for various values of the parameter λT .

syms y; expand(i*y*(cos(y) + i*sin(y)))

ans =

i*y*cos(y)-y*sin(y)

ezplot(-y*sin(y), y*cos(y), [-2*pi, 2*pi]); hold on
theta = 0:0.05*pi:2*pi;
plot((1/2)*(cos(theta) - 1), (1/2)*sin(theta), ’-’);
plot(cos(theta) - 1, sin(theta), ’:’)
plot(2*(cos(theta) - 1), 2*sin(theta), ’--’);
title(’iyeˆ{iy} and circles \lambda T(eˆ{i\theta}-1)’)
hold off
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Here the small solid circle corresponds to λT = 1/2, and we are just at the limit
of stability, since this circle does not cross the spiral produced by z exp(z) for z a
complex number on the critical line Re z = 0, though it “hugs” the spiral closely.
The dotted and dashed circles, corresponding to λT = 1 or 2, do cross the spiral, so
they correspond to unstable traffic flow.

We can check these theoretical predictions with a simulation using Simulink. We’ll
give a picture of the Simulink model and then explain it.

open_system traffic
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0.8
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parameter
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car positions

−C−

initial velocities
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initial car positions

car speeds
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Here the Subsystem, which corresponds to multiplication by S − I , looks like this:

open_system ’traffic/Subsystem: computes velocity differences’

1

Out1

em1

In1

Most of the model is like the example in Chapter 8, except that our unknown function
(called u), representing the car positions, is vector-valued, not scalar-valued. The
major exceptions are these.

• We need to incorporate the reaction-time delay, so we’ve inserted a Transport
Delay block from the Continuous block library, with the “Time delay” param-
eter T set to 0.5.

• The parameter λ shows up as the value of the gain in the “sensitivity parameter”
Gain block in the upper right.

• Plotting car positions by themselves is not terribly useful, since only the rela-
tive positions matter. So before outputting the car positions to the Scope block
labeled “relative car positions,” we’ve subtracted a constant linear function (cor-
responding to uniform motion at the average car speed) created by the Ramp
block from the Sources block library.

• We’ve made use of the option in the Integrator blocks to input the initial con-
ditions, instead of having them built into the block. This makes the logical
structure a little clearer.

• We’ve used the subsystem feature of Simulink. If you enclose a bunch of blocks
with the mouse and then click on “Create subsystem” in the model’s Edit menu,
Simulink will package them as a subsystem. This is helpful if your model is
large or if there is some combination of blocks that you expect to use more
than once. Our subsystem sends a vector v to (S − I)v = Sv − v. A Sum
block (with one of the signs changed to a minus) is used for vector subtraction.
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To model the action of S, we’ve used the Demux and Mux blocks from the
Signal Routing block library. The Demux block, with the “number of outputs”
parameter set to [4, 1], splits a five-dimensional vector into a pair consisting
of a four-dimensional vector and a scalar (corresponding to the last car). Then
we reverse the order of these and put them back together with the Mux block,
with the “number of inputs” parameter set to [1, 4].

Once the model has been assembled, it can be run with various inputs. You can see
the results yourself in the two Scope windows, but here we’ve run the simulation
from the command line and plotted the results with the simplot command, that
does almost the same thing as a Scope but in a regular MATLAB figure window. The
following pictures are produced with λ = 0.8, corresponding to stable flow (though,
to be honest, we’ve let two cars cross through each other briefly!):

set_param(’traffic/sensitivity parameter’, ’Gain’, ’0.8’);
[t, x] = sim(’traffic’);

The variable t stores the time parameter, the variable x stores car velocities in its first
five columns and car positions in the second five columns. In this example, the average
velocity is 3.15. First we plot the relative positions, then we plot the velocities.

relpos = x(:,6:10) - 3.15*t*ones(1,5);
simplot(t, relpos), title(’Relative Positions’)
axis([0, 20, 0, 1]), axis normal
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simplot(t, x(:,1:5)), title(’Car Velocities’)
axis([0, 20, 3, 3.3])
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As you can see, the speeds fluctuate but eventually converge to a single value, and the
separations between cars eventually stabilize. On the other hand, if λ is increased by
changing the “sensitivity parameter” in the Gain block in the upper right, say from
0.8 to 2.0, we get the following output, which is typical of instability:

set_param(’traffic/sensitivity parameter’, ’Gain’, ’2.0’);
[t, x] = sim(’traffic’);
relpos = x(:,6:10) - 3.15*t*ones(1,5);
simplot(t, relpos), title(’Relative Positions’)
axis([0, 20, -10, 10])
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simplot(t, x(:,1:5)), title(’Car Velocities’)
axis([0, 20, -10, 10])
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We encourage you to go back and tinker with the model (for instance using a sensi-
tivity parameter that is also inversely proportional to the spacing between cars) and
study the results.

Finally, you can create a movie with the following code:

clf reset
set(gcf, ’Color’, ’White’)
clear M
theta = (0:0.025:2)*pi;
for j = 1:length(t)

plot(cos(x(j, 1:5)), sin(x(j, 1:5)), ’o’);
axis([-1, 1, -1, 1]);
hold on; plot(cos(theta), sin(theta), ’r’); hold off
axis equal;
M(j) = getframe;

end
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The idea here is that we have taken the circular road to have radius 1 (in suitable
units), so that the command plot(cos(theta),sin(theta),’r’) draws a
red circle (representing the road) in each frame of the movie, and on top of that the
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cars are shown with moving little circles. The graph above is the last frame of the
movie; you can view the entire movie by typing movie(M) or movieview(M).
Try it!

We should mention here one fine point needed to create a realistic movie. Namely, we
need the values of t to be equally spaced – otherwise the cars will appear to be moving
faster when the time steps are large, and will appear to be moving slower when the
time steps are small. In its default mode of operation, Simulink uses a variable-step
differential-equation solver based on MATLAB’s command ode45, so the entries
of t will not be equally spaced. We have fixed this by opening the Configuration
Parameters dialog box using the Simulation menu in the model window, and, under
the Data Import/Export item, changing the Output options box to read Produce
specified output only, with Output times chosen to be [0:0.5:20].
Then the model will output the car positions only at times that are multiples of 0.5,
and the MATLAB program above will produce a 41-frame movie.





Practice Set C

Developing Your MATLAB
Skills

Problems 5, 7, 14, and 15 are a bit more advanced than the others. Problems 8 and
9 require either simlp from Simulink or else the Optimization Toolbox. Problem
11(a) requires the Symbolic Math Toolbox; the others do not. Simulink is needed for
Problems 12 and 13.

1. Captain Picard is hiding in a square arena, 50 meters on a side, which is pro-
tected by a level-5 force field. Unfortunately, the Cardassians, who are firing
on the arena, have a death ray that can penetrate the force field. The point of
impact of the death ray is exposed to 10,000 illumatons of lethal radiation. It
requires only 50 illumatons to dispatch the Captain; anything less has no effect.
The number of illumatons that arrive at point (x, y) when the death ray strikes
one meter above ground at point (x0, y0) is governed by an inverse square law,
namely

10000
4π((x − x0)2 + (y − y0)2 + 1)

.

The Cardassian sensors cannot locate Picard’s exact position, so they fire at a
random point in the arena.

(a) Use contour to display the arena after five random bursts of the death
ray. The half-life of the radiation is very short, so one can assume that it
disappears almost immediately – only its initial burst has any effect. Nev-
ertheless, include all five bursts in your picture, like a time-lapse photo.
Where in the arena do you think Captain Picard should hide?

(b) Suppose that Picard stands in the center of the arena. Moreover, suppose
that the Cardassians fire the death ray 100 times, each shot landing at a
random point in the arena. Is Picard killed?

(c) Re-run the “experiment” in part (b) 100 times, and approximate the prob-
ability that Captain Picard can survive an attack of 100 shots.

(d) Redo part (c) but place the Captain halfway to one side (i.e., at x = 37.5,
y = 25 if the coordinates of the arena are 0 ≤ x ≤ 50, 0 ≤ y ≤ 50).

(e) Redo the simulation with the Captain completely to one side, and finally
in a corner. What self-evident fact is reinforced for you?

195
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2. Consider an account that has M dollars in it and pays monthly interest J . Sup-
pose that, beginning at a certain point, an amount S is deposited monthly and
no withdrawals are made.

(a) Assume first that S = 0. Using the Mortgage Payments application in
Chapter 10 as a model, derive an equation relating J , M , the number n
of months elapsed, and the total T in the account after n months. Assume
that the interest is credited on the last day of the month and the total T is
computed on the last day after the interest is credited.

(b) Now assume that M = 0, that S is deposited on the first day of the month,
and that as before interest is credited on the last day of the month, and the
total T is computed on the last day after the interest has been credited.
Once again, using the mortgage application as a model, derive an equation
relating J , S, the number n of months elapsed, and the total T in the
account after n months.

(c) By combining the last two models derive an equation relating all of M ,
S, J , n, and T , now of course assuming that there is an initial amount in
the account (M ) as well as a monthly deposit (S).

(d) If the annual interest rate is 5%, and no monthly deposits are made, how
many years does it take to double your initial stash of money? What if the
annual interest rate is 10%?

(e) In this and the next part, there is no initial stash. Assume an annual interest
rate of 8%. How much do you have to deposit monthly to be a millionaire
in 35 years (a career)?

(f) If the interest rate remains as in (e) and you can afford to deposit only
$300 each month, how long do you have to work to retire a millionaire?

(g) You hit the lottery and win $100,000. You have two choices: take the
money, pay the taxes, and invest what’s left; or receive $100,000/240
monthly for 20 years, depositing what’s left after taxes. Assume that a
$100,000 windfall costs you $35,000 in federal and state taxes, but that
the smaller monthly payoff causes only a 20% tax liability. In which way
are you better off 20 years later? Assume a 5% annual interest rate here.

(h) Historically, banks have paid roughly 5%, while the stock market has
tended to return 8% on average over a 10-year period. So parts (e) and
(f) relate more to investing than to saving. But suppose that the market
in a 5-year period returns 13%, 15%, −3%, 5% and 10% in five succes-
sive years, and then repeats the cycle. (Note that the [arithmetic] average
is 8%, though a geometric mean would be more relevant here.) Assume
that $50,000 is invested at the start of a 5-year market period. How much
does it grow to in 5 years? Now recompute four more times, assuming
that you enter the cycle at the beginning of the second year, the third year,
etc. Which choice yields the best/worst results? Can you explain why?
Compare the results with a fixed-rate account paying 8%. Assume sim-
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ple annual interest. Redo the five investment computations, assuming that
$10,000 is invested at the start of each year. Again analyze the results.

3. Tony Gwynn had a lifetime batting average of .338. This means that, for every
1000 at bats, he had 338 hits. (For this exercise, we shall ignore walks, hit
batsmen, sacrifices, and other plate appearances that do not result in an official
at bat.) In an average year he amassed 500 official at bats.

(a) Design a Monte Carlo simulation of a year in Tony’s career. Run it. What
is his batting average?

(b) Now simulate a 20-year career. Assume 500 official at bats every year.
What is his best batting average in his career? What is his worst? What is
his lifetime average?

(c) Now run the 20-year career simulation four more times. Answer the ques-
tions in part (b) for each of the four simulations.

(d) Compute the average of the five lifetime averages you computed in parts
(b) and (c). What do you think would happen if you ran the 20-year
simulation 100 times and took the average of the lifetime averages for all
100 simulations?

The next four problems illustrate some basic MATLAB programming skills.

4. For a positive integer n, let A(n) be the n× n matrix whose entry in the (i, j)-
position is aij = 1/(i + j − 1). For example,

A(3) =

⎛
⎝1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎞
⎠ .

The eigenvalues of A(n) are all real numbers. Write a script M-file that prints
the largest eigenvalue of A(500), without any extraneous output. (Hint: the
M-file may take a while to run if you use a loop within a loop to define A. Try
to avoid this!)

5. ✰ Write a script M-file that draws a bulls-eye pattern with a central circle col-
ored red, surrounded by alternating circular strips (annuli) of white and black,
say ten of each. Make sure that the final display shows circles, not ellipses.
(Hint: one way to color the region between two circles black is to color the
entire inside of the outer circle black, then color the inside of the inner circle
white.)

6. MATLAB has a function lcm that finds the least common multiple of two num-
bers. Write a function M-file mylcm.m that finds the least common multiple
of an arbitrary number of positive integers, which may be given as separate
arguments or in a vector. For example, mylcm(4, 5, 6) and mylcm([4
5 6]) should both produce the answer 60. The program should produce a
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helpful error message if any of the inputs are not positive integers. (Hint: for
three numbers you could use lcm to find the least common multiple m of the
first two numbers, then use lcm again to find the least common multiple of m
and the third number. Your M-file can generalize this approach.)

7. ✰ Write a function M-file that takes as input a string containing the name of a
text file and produces a histogram of the number of occurrences of each letter
from A to Z in the file. Try to label the figure and axes as usefully as you can.

8. Consider the following linear programming problem. Jane Doe is running for
County Commissioner. She wants to personally canvass voters in the four main
cities in the county: Gotham, Metropolis, Oz, and River City. She needs to
figure out how many residences (private homes, apartments, etc.) to visit in
each city. The constraints are as follows.

(i) She intends to leave a campaign pamphlet at each residence; she has only
50,000 available.

(ii) The travel costs she incurs for each residence are $0.50 in each of Gotham
and Metropolis, $1 in Oz, and $2 in River City; she has $40,000 available.

(iii) The number of minutes (on average) that her visits to each residence re-
quire are 2 minutes in Gotham, 3 minutes in Metropolis, a minute in Oz,
and 4 minutes in River City; she has 300 hours available.

(iv) Because of political profiles Jane knows that she should not visit any
more residences in Gotham than she does in Metropolis, and that, how-
ever many residences she visits in Metropolis and Oz, the total of the two
should not exceed the number she visits in River City.

(v) Jane expects to receive, during her visits, on average, campaign contribu-
tions of one dollar from each residence in Gotham, a quarter from those
in Metropolis, a half-dollar from the Oz residents, and three dollars from
the folks in River City. She must raise at least $10,000 from her entire
canvass.

Jane’s goal is to maximize the number of supporters (those likely to vote for
her). She estimates that for each residence she visits in Gotham the odds are 0.6
that she picks up a supporter, and the corresponding probabilities in Metropolis,
Oz, and River City are, respectively, 0.6, 0.5, and 0.3.

(a) How many residences should she visit in each of the four cities?

(b) Suppose that she can double the time she can allot to visits. Now what is
the profile for visits?

(c) But suppose that the extra time (in part (b)) also mandates that she double
the contributions she receives. What is the profile now?

9. Consider the following linear programming problem. The famous football
coach Joe Glibb is trying to decide how many hours to spend with each compo-
nent of his offensive unit during the coming week – that is, the quarterback, the
running backs, the receivers, and the linemen. The constraints are as follows.
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(i) The number of hours available to Joe during the week is 50.

(ii) Joe figures he needs 20 points to win the next game. He estimates that
for each hour he spends with the quarterback, he can expect a point return
of 0.5. The corresponding numbers for the running backs, receivers and
linemen are 0.3, 0.4, and 0.1, respectively.

(iii) In spite of their enormous size, the players are relatively thin skinned.
Each hour with the quarterback is likely to require Joe to criticize him
once. The corresponding numbers of criticisms per hour for the other
three groups are 2 for running backs, 3 for receivers, and 0.5 for linemen.
Joe figures he can bleat out only 75 criticisms in a week before he loses
control.

(iv) Finally, the players are prima donnas who engage in rivalries. Because of
that, he must spend exactly the same number of hours with the running
backs as he does with the receivers, at least as many hours with the quar-
terback as he does with the runners and receivers combined, and at least
as many hours with the receivers as with the linemen.

Joe worries that he’s going to be fired at the end of the season regardless of the
outcome of the game, so his primary goal is to maximize his pleasure during
the week. (The team’s owner should only know.) He estimates that, on a sliding
scale from 0 to 1, he gets 0.2 units of personal satisfaction for each hour with
the quarterback. The corresponding numbers for the runners, receivers and
linemen are 0.4, 0.3, and 0.6, respectively.

(a) How many hours should Joe spend with each group?

(b) Suppose that he needs only 15 points to win; then how many?

(c) Finally suppose, despite needing only 15 points, that the troops are getting
restless and he can only dish out only 70 criticisms this week. Is Joe
getting the most out of his week?

diode
battery

resistor

Ri

V0

Figure C.1. A Nonlinear Circuit.

10. This problem, suggested to us by our colleague Tom Antonsen, concerns an
electrical circuit, one of whose components does not behave linearly. Consider
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the circuit in Figure C.1. Unlike the resistor, the diode is a non-linear element
– it does not obey Ohm’s Law. In fact its behavior is specified by the formula

i = I0 exp(VD/VT ), (C.1)

where i is the current in the diode (which is the same as that in the resistor by
Kirchhoff’s Current Law), VD is the voltage across the diode, I0 is the leakage
current of the diode, and VT = kT/e, where k is Boltzmann’s constant, T is
the temperature of the diode, and e is the electrical charge.

Now, by application of Ohm’s Law to the resistor, we also know that VR = iR,
where VR is the voltage across the resistor and R is its resistance. But, by
Kirchhoff’s Voltage Law, we also have VR = V0 − VD. This gives a second
equation relating the diode current and voltage, namely

i = (V0 − VD)/R. (C.2)

Note now that (C.2) says that i is a decreasing linear function of VD with value
V0/R when VD is zero. At the same time (C.1) says that i is an exponentially
growing function of VD starting out at I0. Since, typically, RI0 < V0, the
two resulting curves (for i as a function of VD) must cross once. Eliminating
i from the two equations, we see that the voltage in the diode must satisfy the
transcendental equation

(V0 − VD)/R = I0 exp(VD/VT ),

or
VD = V0 − RI0 exp(VD/VT ).

(a) Reasonable values for the electrical constants are V0 = 1.5 volts, R =
1000 ohms, I0 = 10−5 amperes, and VT = 0.0025 volts. Use fzero to
find the voltage VD and current i in the circuit.

(b) In the remainder of the problem, we assume that the voltage V0 in the bat-
tery and the resistance R of the resistor are unchanged. But suppose that
we have some freedom to alter the electrical characteristics of the diode.
For example, suppose that I0 is halved. What happens to the voltage?

(c) Suppose that, instead of halving I0, we halve VT . Then what is the effect
on VD?

(d) Suppose that both I0 and VT are cut in half. What then?

(e) Finally, we want to examine the behavior of the voltage if both I0 and
VT are decreased toward zero. For definitiveness, assume that we set
I0 = 10−5x and VT = 0.0025x, and let x → 0. Specifically, compute
the solution for x = 10−j , j = 0, . . . , 5. Then, display a loglog plot
of the solution values, for the voltage as a function of I0. What do you
conclude?
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11. This problem is based on the Population Dynamics and The 360˚ Pendulum
applications from Chapter 10. The growth of a species was modeled in the
former by a difference equation. In this problem we will model population
growth by a differential equation, akin to the second application mentioned
above. In fact we can give a differential-equation model for the logistic growth
of a population x as a function of time t by means of the equation

ẋ = x(1 − x) = x − x2, (C.3)

where ẋ denotes the derivative of x with respect to t. We think of x as a fraction
of some maximal possible population. One advantage of this continuous model
over the discrete model in Chapter 10 is that we can get a “reading” of the
population at any point in time (not just on integer intervals).

(a) Symbolic

The differential equation (C.3) is solved in any beginning course in or-
dinary differential equations, but you can do it easily with the MATLAB
command dsolve. (Look up the syntax via online help.)

(b) Now find the solution assuming an initial value x0 = x(0) of x. Use the
values x0 = 0, 0.25, . . . , 2.0. Graph the solutions and use your picture to
justify the statement: “Regardless of x0 > 0, the solution of (C.3) tends
to the constant solution x(t) ≡ 1 in the long term.”

The logistic model presumes two underlying features of population growth: (i)
that ideally the population expands at a rate proportional to its current total (i.e.,
exponential growth – this corresponds to the x term on the right-hand side of
(C.3)); and (ii) because of interactions between members of the species and
natural limits to growth, unfettered exponential growth is held in check by the
logistic term, given by the −x2 expression in (C.3). Now assume that there
are two species x(t) and y(t), competing for the same resources to survive.
Then there will be another negative term in the differential equation that re-
flects the interaction between the species. The usual model presumes it to be
proportional to the product of the two populations, and the larger the constant
of proportionality, the more severe the interaction, as well as the resulting check
on population growth.

(c) Here is a typical pair of differential equations that model the growth in
population of two competing species x(t) and y(t):

ẋ(t) = x − x2 − 0.5xy

ẏ(t) = y − y2 − 0.5xy.
(C.4)

The command dsolve can solve many pairs of ordinary differential
equations – especially linear ones. But the mixture of quadratic terms
in (C.4) makes it unsolvable symbolically, so we need to use a numerical
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ODE solver as we did in the pendulum application. Using the commands
in that application as a template, graph numerical solution curves to the
system (C.4) for initial data

x(0) = 0 : 1/12 : 13/12
y(0) = 0 : 1/12 : 13/12.

(Hint: use axis to limit your view to the square 0 ≤ x, y ≤ 13/12.)

(d) The picture you drew is called a phase portrait of the system. Interpret it.
Explain the long-term behavior of any population distribution that starts
with only one species present. Relate it to part (b). What happens in
the long term if both populations are present initially? Is there an initial
population distribution that remains undisturbed? What is it? Relate those
numbers to the model (C.4).

(e) Now replace 0.5 in the model by 2, that is consider the new model

ẋ(t) = x − x2 − 2xy

ẏ(t) = y − y2 − 2xy.
(C.5)

Draw the phase portrait. (Use the same initial data and viewing square.)
Answer the same questions as in part (d). Do you see a special solution
trajectory that emanates from near the origin and proceeds to the special
fixed point? Do you see another trajectory from the upper right to the
fixed point? What happens to all population distributions that do not start
on these trajectories?

(f) Explain why model (C.4) is called “peaceful coexistence” and model
(C.5) is called “doomsday.” Now explain heuristically why the change
in coefficient from 0.5 to 2 converts coexistence into doomsday.

12. Build a Simulink model corresponding to the pendulum equation

ẍ(t) = −0.5ẋ(t) − 9.81 sin(x(t)) (C.6)

from The 360˚ Pendulum in Chapter 10. You will need the Trigonometric Func-
tion block from the Math library. Use your model to redraw some of the phase
portraits.

13. As you know, Galileo and Newton discovered that all bodies near the
Earth’s surface fall with the same acceleration g due to gravity, approximately
32.2 ft/sec2. However, real bodies are also subjected to forces due to air resis-
tance. If we take both gravity and air resistance into account, a moving ball can
be modeled by the differential equation

ẍ = [0,−g] − c ‖ẋ‖ ẋ. (C.7)
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Here x, a function of the time t, is the vector giving the position of the ball (the
first coordinate is measured horizontally, the second one vertically), ẋ is the ve-
locity vector of the ball, ẍ is the acceleration of the ball, ‖ẋ‖ is the magnitude
of the velocity, that is, the speed, and c is a constant depending on the surface
characteristics and mass of the ball and the density of the air. (We are neglecting
the lift force that comes from the ball’s rotation, which can also play a major
role in some situations, for instance in analyzing the path of a curve ball, as well
as forces due to wind currents.) For a baseball, the constant c turns out to be
approximately 0.0017, assuming that distances are measured in feet and time
is measured in seconds. (See, for example, Chapter 18, “Balls and Strikes and
Home Runs,” in Towing Icebergs, Falling Dominoes, and Other Adventures in
Applied Mathematics, by Robert Banks, Princeton University Press, Princeton,
1998.) Build a Simulink model corresponding to equation (C.7), and use it to
study the trajectory of a batted baseball. Here are a few hints. Represent ẍ, ẋ,
and x as vector signals, joined by two Integrator blocks. The quantity ẍ, ac-
cording to (C.7), should be computed from a Sum block with two vector inputs.
One should be a Constant block with the vector value [0,−32.2], representing
gravity, and the other should represent the drag term on the right-hand side of
equation (C.7), computed from the value of ẋ. You should be able to change
one of the parameters to study what happens both with and without air resis-
tance (the cases of c = 0.0017 and c = 0, respectively). Attach the output to
an XY Graph block, with the parameters x-min = 0, y-min = 0, x-max = 500,
y-max = 150, so you can see the path of the ball out to a distance of 500 feet
from home plate and up to a height of 150 feet.

(a) Let x(0) = [0, 4] and ẋ(0) = [80, 80]. (This corresponds to the ball start-
ing at t = 0 from home plate, 4 feet off the ground, with the horizontal
and vertical components of its velocity both equal to 80 ft/sec. This cor-
responds to a speed off the bat of about 77 mph, which is not unrealistic.)
How far (approximately – you can read this from your XY Graph output)
will the ball travel before it hits the ground, both with and without air re-
sistance? About how long will it take the ball to hit the ground, and how
fast will the ball be traveling at that time (again, both with and without air
resistance)? (The last parts of the question are relevant for outfielders.)

(b) Suppose that a game is played in Denver, Colorado, where because of
thinning of the atmosphere due to the high altitude, c is only 0.0014. How
far will the ball travel now (given the same initial velocity as in (a))?

(c) (This is not a MATLAB problem.) Estimate from a comparison of your
answers to (a) and (b) what effect altitude might have on the team batting
average and team earned run average of the Colorado Rockies.

14. ✰ Write a function M-file (with no arguments or outputs) that scans the cur-
rent directory for the most recently modified M-file and opens it in the Edi-
tor/Debugger. If the current directory contains no M-files, your M-file should
produce an error message. Ideally, you should try to write the M-file so it works
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in either Windows or UNIX, but at least make it work with your own operating
system.

15. ✰ Consider a sequence of complex numbers generated from a starting value z0

by the rule zn+1 = z2
n − 0.75. For some values of z0, the sequence of numbers

will diverge to infinity as n increases, but for other values of z0, the sequence
will remain inside a bounded region forever. The boundary of the set consisting
of the latter values of z0 is called the Julia set for the function f(z) = z2−0.75.
Use image or imagesc to draw a picture of this Julia set. (Hint: the Julia
set lies within the region where the real part of z0 is between −2 and 2, and
its imaginary part is between −1.5 and 1.5. Form a grid of z0 values within
this rectangle (we suggest using roughly a 300 × 400 array) and calculate the
corresponding values of z1, z2, . . . , zn for some n. Color the pixel of each z0

according to how large the corresponding zn is. The larger you make n, the
more accurate (and interesting) the picture will be, but the computation will
also take longer, so start with a relatively small value of n and work your way
up.)



Chapter 11

Troubleshooting

In this chapter, we offer advice for dealing with some common problems that you
may encounter. We also list and describe the most common mistakes that MATLAB
users make. Finally, we offer some simple but useful techniques for debugging your
M-files.

Common Problems

Problems manifest themselves in various ways: totally unexpected or plainly wrong
output appears; MATLAB produces an error message (or at least a warning); MAT-
LAB refuses to process an input line; something that worked earlier stops working;
or, worst of all, the computer freezes. Fortunately, these problems are often caused
by several easily identifiable and correctable mistakes. What follows is a description
of some common problems, together with a presentation of likely causes, suggested
solutions, and illustrative examples. We also refer to places in the book where related
issues are discussed.

Here is a list of the problems:

• Wrong or unexpected output

• Syntax error

• Spelling error

• Error or warning messages when plotting

• A previously saved M-file evaluates differently

• Computer won’t respond.

Wrong or Unexpected Output

There are many possible causes for this problem, but they are likely to be among the
following.

CAUSE: Forgetting to clear or reset variables.

SOLUTION: Clear or initialize variables before using them, especially in a long session.

☞ See Variables and Assignments in Chapter 2.
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EXAMPLE: Suppose that you set up a loop like

>> for i = 1:10
...
end

and later in your session you enter the complex number 2+i; then in fact you have
entered the number 12, because at the end of the loop the variable i is set equal to 10.
In order to restore it to its intrinsic value

√−1, you need to type clear i.

CAUSE: Conflicting definitions.

SOLUTION: Do not use the same name for two different functions or variables, and, in partic-
ular, do not overwrite the names of any of MATLAB’s built-in functions.

You can accidentally mask one of MATLAB’s built-in M-files either with your own
M-file of the same name or with a variable (including, perhaps, an inline or anony-
mous function). When unexpected output occurs and you think this might be the
cause, it helps to use which to find out what M-file, function, or variable is actually
being referenced. The preceding example illustrates this problem, but here is perhaps
a more extreme example.

EXAMPLE:

>> plot = gcf;
>> x = -2:0.1:2;
>> plot(x, x.ˆ2)

??? Subscript indices must either be real positive integers or
logicals.

What’s wrong, of course, is that plot has been masked by a variable with the same

name. You could detect this with

>> which plot

plot is a variable.

If you type clear plot and execute the plot command again, you’ll get a picture
of the desired parabola. A more subtle example could occur if you did this on purpose,
not thinking you would use plot, and then called some other graphics script M-file
that uses it indirectly.

CAUSE: Not keeping track of ans.

SOLUTION: Assign variable names to any output that you intend to use.

If you decide at some point in a session that you wish to refer to prior output that
was unnamed, then give the output a name, and execute the command again. (The
UP-ARROW key or Command History Window is useful for recalling the command to
edit it.) Do not rely on ans since it is likely to be overwritten before you execute the
command that references the prior output.

CAUSE: Improper use of built-in functions.

SOLUTION: Always use the names of built-in functions exactly as MATLAB specifies them;
always enclose inputs in parentheses, not brackets and not braces; always list the
inputs in the required order.
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☞ See Managing Variables and Online Help in Chapter 2

CAUSE: Inattention to precedence of arithmetic operations.

SOLUTION: Use parentheses liberally and correctly when entering arithmetic or algebraic ex-
pressions.

EXAMPLE: MATLAB, like any calculator, first exponentiates, then divides and multiplies,
and finally adds and subtracts, unless a different order is specified by using parenthe-
ses. So if you attempt to compute 52/3 − 25/(2 ∗ 3) by typing

>> 5ˆ2/3 - 25/2*3

ans =
-29.1667

the answer MATLAB produces is not what you intended because 5 is raised to the
power 2 before the division by 3, and 25 is divided by 2 before the multiplication by
3. Here is the correct calculation:

>> 5ˆ(2/3) - 25/(2*3)

ans =
-1.2426

Syntax Error

CAUSE: Mismatched parentheses, quote marks, braces, or brackets.

SOLUTION: Look carefully at the input line to find a missing or an extra delimiter.

MATLAB usually catches this kind of mistake. In addition, the MATLAB Desktop
automatically highlights matching delimiters as you type, and color-codes strings (ex-
pressions enclosed in single quotes) so that you can see where they begin and end. In
the Command Window of MATLAB 5 and earlier versions, however, you have to hunt
for matching delimiters by hand.

CAUSE: Wrong delimiters: using parentheses in place of brackets, or vice versa, and
so on.

SOLUTION: Remember the basic rules about delimiters in MATLAB.

Parentheses are used both for grouping arithmetic expressions and for enclosing in-
puts to a MATLAB command, an M-file, or an inline function. They are also used
for referring to an entry in a matrix. Square brackets are used for defining vectors or
matrices. Single quote marks are used for defining strings.

EXAMPLE: The following illustrates what can happen if you don’t follow these rules:

>> X = -1:0.01:1;
>> X[1]

??? X[1]
|

Error: Unbalanced or misused parentheses or brackets.
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>> A = (0,1,2)

??? A = (0,1,2)
|

Error: Incomplete or misformed expression or statement.

These examples are fairly straightforward to understand; in the first case, X(1) was

intended, and in the second case, A = [0,1,2] was intended. But here’s a trickier
example:

>> abs 3

ans =
51

Here there’s no error message, but if one looks closely, one discovers that MATLAB
has printed out the absolute value of 51, not of 3. The explanation is as follows:
any time a MATLAB command is followed by a space and then an argument to the
command (as in the construct clear x), the argument is always interpreted as a
string. Thus MATLAB has interpreted 3 not as the number 3, but as the string ’3’!
And sure enough, one discovers:

>> char(51)

ans =
3

In other words, in MATLAB’s encoding scheme, the string ’3’ is stored as the num-
ber 51, which is why abs 3 (or also abs(’3’)) produces as output the absolute
value of 51.

Braces or curly brackets are used less often than either parentheses or square
brackets, and are usually not needed by beginners. Their main use is with cell arrays.
One example to keep in mind is that, if you want an M-file to take a variable number
of inputs or produce a variable number of outputs, then these are stored in the cell
arrays varargin and varargout, and braces are used to refer to the cells of these
arrays. Similarly, case is sometimes used with braces in the middle of a switch
construct. If you want to construct an array of strings, then it has to be done with
braces, since brackets when applied to strings are interpreted as concatenation.

EXAMPLE:

>> {’a’, ’b’}

ans =
’a’ ’b’

>> [’a’, ’b’]

ans =
ab

CAUSE: Improper use of arithmetic symbols.
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SOLUTION: When you encounter a syntax error, review your input line carefully for mistakes
in typing.

EXAMPLE: If the user, intending to compute 2 times −4, inadvertently switches the symbols,
the result is

>> 2 - * 4

??? 2 - * 4
|

Error: Missing variable or function.

Here the vertical bar highlights the place where MATLAB believes the error is lo-

cated. In this case, the actual error is earlier in the input line.

Spelling Error

CAUSE: Using uppercase instead of lowercase letters in MATLAB commands, or mis-
spelling the command.

SOLUTION: Fix the spelling.

Consider the following accidental misspellings.
EXAMPLE:

>> Sin(pi/2)

??? Undefined command/function ’Sin’.

>> ffzero(@(x) xˆ2 - 3, 1)

??? Undefined command/function ’ffzero’.

>> fzero(@(x) xˆ2 - 3, 1)

ans =
1.7321

Error or Warning Messages When Plotting

CAUSE: There are several possible explanations, but usually the problem is the wrong
type of input for the plotting command chosen.

SOLUTION: Carefully follow the examples in the help lines of the plotting command, and
pay attention to the error and warning messages.

EXAMPLE:

>> X = -3:0.05:3;
>> plot(X, X.ˆ(1/3))

Warning: imaginary parts of complex X and/or Y arguments
ignored.
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Figure 11.1. A Spurious Graph of y = x1/3.

Figure 11.1 is not the graph of y = x1/3 on the interval −3 ≤ x ≤ 3. Actually, the
graph to the right of the origin looks correct, but to the left of the origin the graph
is certainly not right. The warning message provides a clue. What has happened is
that MATLAB is plotting the real part of x1/3, but for a different branch of the multi-
valued function than the one we want. MATLAB is interpreting x1/3 for x negative
as meaning [(1 +

√
3i)/2]|x|1/3. In order to fix the problem, we must specify the

function in MATLAB more carefully. The correct graph in Figure 11.2 results from

>> plot(X, sign(X).*abs(X).ˆ(1/3))
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Figure 11.2. Correct Graph of y = x1/3.

A Previously Saved M-File Evaluates Differently

One of the most frustrating problems you may encounter occurs when a previously
saved M-file, which you are sure is in good shape, won’t evaluate or evaluates incor-
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rectly when opened in a new session.

CAUSE: Change in the sequence of evaluation, or failure to initialize variables.

SOLUTION: Make sure to clear or initialize variables that are not inputs to the M-file.

EXAMPLE: The problem is illustrated by the following simple, but poorly designed, program.
To compute n! (n-factorial), a user writes the following script M-file:

%% computing n!
for k = 1:n

f = f*k;
end
f

thinking he will initialize f = 1 outside the file when choosing n. If he fails to
initialize f the second time he runs the file, he is in for a nasty surprise. Can you see
why?

Computer Won’t Respond

CAUSE: MATLAB is caught in a very large calculation, or some other calamity has
occurred, which has caused it to fail to respond. Perhaps you are using an array
that is too large for your computer memory to handle.

SOLUTION: Abort the calculation with CTRL+C.

If overuse of computer memory is the problem, try to redo your calculation using
smaller arrays, e.g., by using fewer grid points in a 3D plot, or by breaking a large
vectorized calculation into smaller pieces using a loop. Clearing large arrays from
your Workspace may help too.

EXAMPLE: You’ll know it when you see it!

The Most Common Mistakes

The most common mistakes are all accounted for in the causes of the problems de-
scribed earlier. But to help you prevent these mistakes, we compile them here in a
single list to which you can refer periodically. Doing so will help you to establish
“good MATLAB habits.”

• Forgetting to clear or initialize variables

• Improper use of built-in functions

• Inattention to the order of precedence of arithmetic operations

• Improper use of arithmetic symbols

• Mismatched delimiters

• Using the wrong delimiters
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• Plotting the wrong kind of object

• Using uppercase instead of lowercase letters in MATLAB commands, or mis-
spelling commands.

Debugging Techniques

Now that we have discussed the most common mistakes, it’s time to discuss how to
debug your M-files, and how to locate and fix those pesky problems that don’t fit into
the neat categories above.

If one of your M-files is not working the way you expected, perhaps the easiest
thing you can do to debug it is to insert the command keyboard somewhere in the
middle. This temporarily suspends (but does not stop) execution and returns com-
mand to the keyboard, where you are given a special prompt with a K in it. You can
execute whatever commands you want at this point (for instance, to examine some of
the variables). To return to execution of the M-file, type return or dbcont, short
for “debug continue.”

A more systematic way to debug M-files is to use the debugging features of the
MATLAB M-file Editor/Debugger. Start by going to the menu item Tools:Check
Code with M-Lint. This checks the code of the M-file for common mistakes and
syntax errors and prints out a report specifying where potential problems are located.
(You can do the same thing from the Command Window with the command mlint
followed by a space and the name of the file.) Next, use the debugger to insert “break-
points” in the file. Usually you would do this with the Breakpoints menu or with the
“Set/clear breakpoint” icon at the top of the Editor/Debugger window, but you can
also do it from the Command Window with the command dbstop. (See its online
help.) Once a breakpoint has been inserted in the M-file, you will see a little red dot
next to the appropriate line in the Editor/Debugger. (An example is illustrated in Fig-
ure 11.8 below.) Then, when you call the M-file, execution will stop at the breakpoint,
and, just as in the case of keyboard, control will return to the Command Window,
where you will be given a special prompt with a K in it. Again, when you are ready to
resume execution of the M-file, type dbcont. When you have finished the debugging
process, dbclear “clears” the breakpoint from the M-file.

Let’s illustrate these techniques with a real example. Suppose that you want to
construct a function M-file that takes as input two expressions f and g (given either
as symbolic expressions or as strings) and two numbers a and b, plots the functions
f and g between x = a and x = b, and shades the region in between them. As a
first try, you might start with the nine-line function M-file shadecurves.m given
as follows:

function shadecurves(f, g, a, b)
%SHADECURVES Draws the region between two curves
% SHADECURVES(f, g, a, b) takes strings or expressions f
% and g, interprets them as functions, plots them between
% x = a and x = b, and shades the region in between.
% Example: shadecurves(’sin(x)’, ’-sin(x)’, 0, pi)
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ffun = inline(vectorize(f)); gfun = inline(vectorize(g));
xvals = a:(b - a)/50:b;
plot([xvals, xvals], [ffun(xvals), gfun(xvals)])

Let’s run the M-file with the data specified in the help lines:
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Figure 11.3. A First Attempt at Shading the Region between sin x and − sin x.

The graph in Figure 11.3 was obtained by executing

>> shadecurves(’sin(x)’, ’-sin(x)’, 0, pi)

or

>> syms x; shadecurves(sin(x), -sin(x), 0, pi)

This is not really what we wanted; the figure we seek is shown in Figure 11.4.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 11.4. The Shaded Region between sin x and − sin x.

To begin to determine what went wrong, let’s try a different example, say

>> syms x; shadecurves(xˆ2, sqrt(x), 0, 1); axis square

Now we get the output shown in Figure 11.5.



214 Chapter 11. Troubleshooting

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11.5. A First Attempt at Shading the Region between x2 and
√

x.

It’s not too hard to figure out why our regions aren’t shaded; that’s because we used
plot (which plots curves) instead of patch (which plots filled patches). So that
suggests we should try changing the last line of the M-file to:

patch([xvals, xvals], [ffun(xvals), gfun(xvals)])

That gives the error message:

??? Error using ==> patch
Not enough input arguments.

Error in ==> shadecurves at 9
patch([xvals, xvals], [ffun(xvals), gfun(xvals)])

so we go back and try

>> help patch

to see whether we can get the syntax right. The help lines indicate that patch re-
quires a third argument, the color (in RGB coordinates) with which our patch is to be
filled. So we change our final line to, for instance,

patch([xvals, xvals], [ffun(xvals), gfun(xvals)], [.5,0,.7])

That gives us now as output to

>> syms x; shadecurves(xˆ2, sqrt(x), 0, 1); axis square

the picture shown in Figure 11.6.
That’s better, but still not quite right, because we can see a mysterious diagonal

line down the middle. Not only that, but if we try

>> syms x; shadecurves(xˆ2, xˆ4, -1.5, 1.5)

we now get the bizarre picture shown in Figure 11.7.
There aren’t a lot of lines in the M-file, and lines 7 and 8 seem OK, so the problem
must be with the last line. We need to reread the online help for patch. It indicates
that patch draws a filled two-dimensional polygon defined by the vectors X and
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Figure 11.6. A Second Attempt at Shading the Region between x2 and
√

x.
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Figure 11.7. A First Attempt at Shading the Region between x2 and x4.

Y, which are its first two inputs. A way to see how this is working is to change
the “50” in line 9 of the M-file to something much smaller, say 5, and then insert a
breakpoint in the M-file before line 9. At this point, our M-file in the Editor/Debugger
window now looks like Figure 11.8. Note the large dot to the left of the last line,
indicating the breakpoint. When we run the M-file with the same input, we now
obtain in the Command Window a K>> prompt. At this point, it is logical to try to list
the coordinates of the points that are the vertices of our filled polygon, so we try

K>> [[xvals, xvals]’, [ffun(xvals), gfun(xvals)]’]

ans =
-1.5000 2.2500
-0.9000 0.8100
-0.3000 0.0900
0.3000 0.0900
0.9000 0.8100
1.5000 2.2500
-1.5000 5.0625
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Figure 11.8. The Editor/Debugger.

-0.9000 0.6561
-0.3000 0.0081
0.3000 0.0081
0.9000 0.6561
1.5000 5.0625

If we now type

K>> dbcont

we see in the figure window what is shown in Figure 11.9 below.
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Figure 11.9. A Second Attempt at Shading the Region between x2 and x4.

Finally we can understand what is going on; MATLAB has “connected the dots”
using the points whose coordinates were just printed out. In particular, MATLAB has
drawn a line from the point (1.5, 2.25) to the point (−1.5, 5.0625). This is not what
we wanted; we wanted MATLAB to join the point (1.5, 2.25) on the curve y = x2 to
the point (1.5, 5.0625) on the curve y = x4. We can fix this by reversing the order
of the x-coordinates at which we evaluate the second function g. So, letting slavx
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denote xvals reversed, we correct our M-file to read:

function shadecurves(f, g, a, b)
%SHADECURVES Draws the region between two curves
% SHADECURVES(f, g, a, b) takes strings or expressions f
% and g, interprets them as functions, plots them between
% x = a and x = b, and shades the region in between.
% Example: shadecurves(’sin(x)’, ’-sin(x)’, 0, pi)
ffun = inline(vectorize(f)); gfun = inline(vectorize(g));
xvals = a:(b - a)/50:b; slavx = b:(a - b)/50:a;
patch([xvals, slavx], [ffun(xvals), gfun(slavx)], [.5,0,.7])

Now it works properly. Sample output from this M-file is shown in Figure 11.4. Try
it out on the other examples we have discussed, or on others of your choice.





Solutions to the Practice Sets

Solutions to Practice Set A: Algebra and Arithmetic

1.

(a)

1111 - 345

ans =

766

(b)

format long; [exp(14), 382801*pi]

ans =

1.0e+06 *

1.20260428416478 1.20260480938683

The second number is bigger.

(c)

[2709/1024; 10583/4000; 2024/765]

ans =

2.64550781250000
2.64575000000000
2.64575163398693

sqrt(7)

ans =

2.64575131106459

The third, that is 2024/765, is the best approximation.

219
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2.

(a)

cosh(0.1)

ans =

1.00500416805580

(b)

log(2)

ans =

0.69314718055995

(c)

atan(1/2)

ans =

0.46364760900081

format short

3.

[x, y, z] = solve(’3*x + 4*y + 5*z = 2’, ...
’2*x - 3*y + 7*z = -1’, ’x - 6*y + z = 3’, ...
’x’, ’y’, ’z’)

x =

241/92

y =

-21/92
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z =

-91/92

Now we’ll check the answer.

A = [3, 4, 5; 2, -3, 7; 1, -6, 1]; A*[x; y; z]

ans =

2
-1
3

It works!

4.

[x, y, z] = solve(’3*x - 9*y + 8*z = 2’, ...
’2*x - 3*y + 7*z = -1’, ’x - 6*y + z = 3’, ...
’x’, ’y’, ’z’)

x =

22/5+39/5*y

y =

y

z =

-9/5*y-7/5

We get a one-parameter family of answers depending on the variable y. In fact the
three planes determined by the three linear equations are not independent, because the
first equation is the sum of the second and third. The locus of points that satisfy the
three equations is not a point, the intersection of three independent planes, but rather
a line, the intersection of two distinct planes. Once again we check.
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B = [3, -9, 8; 2, -3, 7; 1, -6, 1]; B*[x; y; z]

ans =

2
-1
3

5.

syms x y; factor(xˆ4 - yˆ4)

ans =

(x-y)*(x+y)*(xˆ2+yˆ2)

6.

(a)

simplify(1/(1 + 1/(1 + 1/x)))

ans =

(x+1)/(2*x+1)

(b)

simplify(cos(x)ˆ2 - sin(x)ˆ2)

ans =

2*cos(x)ˆ2-1

Let’s try simple instead.

[better, how] = simple(cos(x)ˆ2 - sin(x)ˆ2)
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better =

cos(2*x)

how =

combine(trig)

7.

3ˆ301

pretty(sym(’3’)ˆ301)

ans =

4.1067e+143

4106744371757651279739780821462649478993910868760123094144405702351069915\
3249722978140061846706682416475145332179398212844053819829708732369\
8003

But note the following:

sym(’3ˆ301’)

ans =

3ˆ301

This does not work because sym, by itself, does not cause an evaluation.

8.

(a)

solve(’67*x + 32 = 0’, ’x’)

ans =

-32/67
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(b)

vpa(ans, 15)

ans =

-.477611940298507

(c)

pretty(solve(’xˆ3 + p*x + q = 0’, ’x’))

[ 1/3 p ]
[ 1/6 %1 - 2 ----- ]
[ 1/3 ]
[ %1 ]
[ ]
[ 1/3 p 1/2 / 1/3 p \]
[- 1/12 %1 + ----- + 1/2 I 3 |1/6 %1 + 2 -----|]
[ 1/3 | 1/3|]
[ %1 \ %1 /]
[ ]
[ 1/3 p 1/2 / 1/3 p \]
[- 1/12 %1 + ----- - 1/2 I 3 |1/6 %1 + 2 -----|]
[ 1/3 | 1/3|]
[ %1 \ %1 /]

3 2 1/2
%1 := -108 q + 12 (12 p + 81 q )

Note how pretty separates out the subexpression

−108q + 12
√

12p3 + 81q2,

which occurs in the formulas for all three of the roots, and gives it a name. This
expression is closely related to the discriminant of the cubic equation.

(d)

ezplot(’exp(x)’); hold on; ezplot(’8*x - 4’)
title(’eˆx and 8x - 4’)
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ex and 8x − 4

fzero(’exp(x) - 8*x + 4’, 1)

ans =

0.7700

fzero(’exp(x) - 8*x + 4’, 3)

ans =

2.9929

9.

(a)

hold off; ezplot(’xˆ3 - x’, [-4 4])
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(b)

ezplot(’sin(1/xˆ2)’, [-2 2])
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1

x

sin(1/x2)

X = -2:0.1:2; plot(X, sin(1./X.ˆ2))

Warning: Divide by zero.
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Both pictures are incomplete. Let’s see what happens if we refine the mesh.

X = -2:0.001:2; plot(X, sin(1./X.ˆ2))

Warning: Divide by zero.
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This is better, but because of the wild oscillation near x = 0, neither plot nor
ezplot gives a totally accurate graph of the function.

(c)

ezplot(’tan(x/2)’, [-pi pi]); axis([-pi, pi, -10, 10])
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x

tan(x/2)

(d)

X = -1.5:0.01:1.5;
plot(X, exp(-X.ˆ2), X, X.ˆ4 - X.ˆ2)
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10.

Let’s plot 2x and x4 and look for points of intersection. We plot them first with
ezplot just to get a feel for the graph.

ezplot(’xˆ4’); hold on; ezplot(’2ˆx’); hold off
title(’xˆ4 and 2ˆx’)
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Note the large vertical range. We learn from the plot that there are no points of
intersection between 2 and 6 or between −6 and −2; but there are apparently two
points of intersection between −2 and 2. Let’s change to plot now and focus on the
interval between −2 and 2. We’ll plot x4 dashed.

X = -2:0.1:2; plot(X, 2.ˆX);
hold on; plot(X, X.ˆ4, ’--’); hold off
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We see that there are points of intersection near −0.9 and 1.2. Are there any other
points of intersection? To the left of 0, 2x is always less than 1, whereas x4 goes to
infinity as x goes to negative infinity. On the other hand, both x4 and 2x go to infinity
as x goes to infinity, so the graphs may cross again to the right of 6. Let’s check.

X = 6:0.1:20; plot(X, 2.ˆX);
hold on; plot(X, X.ˆ4, ’--’); hold off
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We see that they do cross again, near x = 16. If you know a little calculus, you can
show that the graphs never cross again (by taking logarithms, for example), so we
have found all the points of intersection. Now let’s use fzero to find these points
of intersection numerically. This command looks for a solution near a given starting
point. To find the three different points of intersection we will have to use three
different starting points. The above graphical analysis suggests appropriate starting
points.

r1 = fzero(’2ˆx - xˆ4’, -0.9)
r2 = fzero(’2ˆx - xˆ4’, 1.2)
r3 = fzero(’2ˆx - xˆ4’, 16)
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r1 =

-0.8613

r2 =

1.2396

r3 =

16

Let’s check that these “solutions” satisfy the equation.

subs(’2ˆx - xˆ4’, ’x’, r1)
subs(’2ˆx - xˆ4’, ’x’, r2)
subs(’2ˆx - xˆ4’, ’x’, r3)

ans =

1.1102e-16

ans =

-8.8818e-16

ans =

0

So r1 and r2 very nearly satisfy the equation, and r3 satisfies it exactly. It is easily
seen that 16 is a solution. It is also interesting to try solve on this equation.

symroots = solve(’2ˆx - xˆ4 = 0’)

symroots =

-4*lambertw(-1/4*log(2))/log(2)
-4*lambertw(-1,-1/4*log(2))/log(2)
-4*lambertw(-1/4*i*log(2))/log(2)

-4*lambertw(1/4*log(2))/log(2)
-4*lambertw(1/4*i*log(2))/log(2)
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The function lambertw is a “special function” that is built into MATLAB. You can
learn more about it by typing help lambertw. Let’s see the decimal values of the
solutions.

double(symroots)

ans =

1.2396
16.0000
-0.1609 + 0.9591i
-0.8613
-0.1609 - 0.9591i

In fact we get the three real solutions already found and two complex solutions. Only
the real solutions correspond to points where the graphs intersect.

Solutions to Practice Set B: Calculus, Graphics, and Linear
Algebra

1.

(a)

[X, Y] = meshgrid(-1:0.1:1, -1:0.1:1);
contour(X, Y, 3*Y + Y.ˆ3 - X.ˆ3, ’k’)
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[X, Y] = meshgrid(-10:0.1:10, -10:0.1:10);
contour(X, Y, 3*Y + Y.ˆ3 - X.ˆ3, ’k’)



232 Solutions to the Practice Sets
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Here is a plot with more level curves.

[X, Y] = meshgrid(-10:0.1:10, -10:0.1:10);
contour(X, Y, 3*Y + Y.ˆ3 - X.ˆ3, 30, ’k’)
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(b)

Now we plot the level curve through 5.

[X, Y] = meshgrid(-5:0.1:5, -5:0.1:5);
contour(X, Y, 3.*Y + Y.ˆ3 - X.ˆ3, [5 5], ’k’)
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−5 0 5
−5
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5

(c)

We note that f(1, 1) = 0, so the appropriate commands to plot the level curve of f
through the point (1, 1) are

[X, Y] = meshgrid(0:0.1:2, 0:0.1:2);
contour(X, Y, Y.*log(X) + X.*log(Y), [0 0], ’k’)

Warning: Log of zero.
Warning: Log of zero.
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2.

We find the derivatives of the given functions:

syms x r
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(a)

diff(6*xˆ3 - 5*xˆ2 + 2*x - 3, x)

ans =

18*xˆ2-10*x+2

(b)

diff((2*x - 1)/(xˆ2 + 1), x)

ans =

2/(xˆ2+1)-2*(2*x-1)/(xˆ2+1)ˆ2*x

simplify(ans)

ans =

-2*(xˆ2-1-x)/(xˆ2+1)ˆ2

(c)

diff(sin(3*xˆ2 + 2), x)

ans =

6*cos(3*xˆ2+2)*x

(d)

diff(asin(2*x + 3), x)

ans =

1/(-2-xˆ2-3*x)ˆ(1/2)
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(e)

diff(sqrt(1 + xˆ4), x)

ans =

2/(1+xˆ4)ˆ(1/2)*xˆ3

(f)

diff(xˆr, x)

ans =

xˆr*r/x

(g)

diff(atan(xˆ2 + 1), x)

ans =

2*x/(1+(xˆ2+1)ˆ2)

3.

We compute the following integrals.

(a)

int(cos(x), x, 0, pi/2)

ans =

1



236 Solutions to the Practice Sets

(b)

int(x*sin(xˆ2), x)

ans =

-1/2*cos(xˆ2)

To check the indefinite integral, we just differentiate.

diff(-cos(xˆ2)/2, x)

ans =

x*sin(xˆ2)

(c)

int(sin(3*x)*sqrt(1 - cos(3*x)), x)

ans =

2/9*(1-cos(3*x))ˆ(3/2)

diff(ans, x)

ans =

sin(3*x)*(1-cos(3*x))ˆ(1/2)

(d)

int(xˆ2*sqrt(x + 4), x)

ans =

2/7*(x+4)ˆ(7/2)-16/5*(x+4)ˆ(5/2)+32/3*(x+4)ˆ(3/2)
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diff(ans, x)

ans =

(x+4)ˆ(5/2)-8*(x+4)ˆ(3/2)+16*(x+4)ˆ(1/2)

simplify(ans)

ans =

xˆ2*(x+4)ˆ(1/2)

(e)

int(exp(-xˆ2), x, -Inf, Inf)

ans =

piˆ(1/2)

4.

(a)

syms x; int(exp(sin(x)), x, 0, pi)

Warning: Explicit integral could not be found.

ans =

int(exp(sin(x)),x = 0 .. pi)

format long; quadl(@(x) exp(sin(x)), 0, pi)

ans =

6.20875803571375
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(b)

quadl(@(x) sqrt(x.ˆ3 + 1), 0, 1)

ans =

1.11144798484585

(c)

MATLAB integrated this one exactly in 3(e) above; let’s integrate it numerically and
compare answers. Unfortunately, the range is infinite, so to use quadl we have to
approximate the interval. Note that

exp(-35)

ans =

6.305116760146989e-16

which is close to the standard floating-point accuracy, so

format long; quadl(@(x) exp(-x.ˆ2), -35, 35)

ans =

1.77245385102263

sqrt(pi)

ans =

1.77245385090552

The answers agree up to at least eight digits.

5.

(a)

limit(sin(x)/x, x, 0)

ans =

1
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(b)

limit((1 + cos(x))/(x + pi), x, -pi)

ans =

0

(c)

limit(xˆ2*exp(-x), x, Inf)

ans =

0

(d)

limit(1/(x - 1), x, 1, ’left’)

ans =

-Inf

(e)

limit(sin(1/x), x, 0, ’right’)

ans =

-1 .. 1

This means that every real number in the interval between −1 and +1 is a “limit
point” of sin(1/x) as x tends to zero. You can see why if you plot sin(1/x) on the
interval (0, 1].

ezplot(sin(1/x), [0 1])



240 Solutions to the Practice Sets
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6.

(a)

syms k n r x z
symsum(kˆ2, k, 0, n)

ans =

1/3*(n+1)ˆ3-1/2*(n+1)ˆ2+1/6*n+1/6

simplify(ans)

ans =

1/3*nˆ3+1/2*nˆ2+1/6*n

(b)

symsum(rˆk, k, 0, n)

ans =

rˆ(n+1)/(r-1)-1/(r-1)
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pretty(ans)

(n + 1)
r 1
-------- - -----
r - 1 r - 1

(c)

symsum(xˆk/factorial(k), k, 0, Inf)

Error using ==> factorial
N must be a matrix of non-negative integers.

Here are two ways around this difficulty.

symsum(xˆk/gamma(k + 1), k, 0, Inf)

ans =

exp(x)

symsum(xˆk/sym(’k!’), k, 0, Inf)

ans =

exp(x)

(d)

symsum(1/(z - k)ˆ2, k, -Inf, Inf)

ans =

piˆ2+piˆ2*cot(pi*z)ˆ2
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7.

(a)

taylor(exp(x), 7, 0)

ans =

1+x+1/2*xˆ2+1/6*xˆ3+1/24*xˆ4+1/120*xˆ5+1/720*xˆ6

(b)

taylor(sin(x), 5, 0)

ans =

x-1/6*xˆ3

taylor(sin(x), 6, 0)

ans =

x-1/6*xˆ3+1/120*xˆ5

(c)

pretty(taylor(sin(x), 6, 2))

2 3
sin(2) + cos(2) (x - 2) - 1/2 sin(2) (x - 2) - 1/6 cos(2) (x - 2)

4 5
+ 1/24 sin(2) (x - 2) + 1/120 cos(2) (x - 2)

(d)

taylor(tan(x), 7, 0)

ans =

x+1/3*xˆ3+2/15*xˆ5
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(e)

taylor(log(x), 5, 1)

ans =

x-1-1/2*(x-1)ˆ2+1/3*(x-1)ˆ3-1/4*(x-1)ˆ4

(f)

pretty(taylor(erf(x), 9, 0))

3 5 7
x x x x

2 ----- - 2/3 ----- + 1/5 ----- - 1/21 -----
1/2 1/2 1/2 1/2

pi pi pi pi

8.

(a)

syms x y; ezsurf(sin(x)*sin(y), [-3*pi 3*pi -3*pi 3*pi])
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−5
0

5

−1

−0.5

0

0.5

1

x

sin(x) sin(y)

y

(b)

syms x y; ezsurf((xˆ2 + yˆ2)*cos(xˆ2 + yˆ2), [-1 1 -1 1])
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9.

T = 0:0.01:1;
for j = 0:16

fill(4*cos(j*pi/8)+(1/2)*cos(2*pi*T), ...
4*sin(j*pi/8)+(1/2)*sin(2*pi*T), ’r’);

axis equal; axis([-5 5 -5 5]);
M(j+1) = getframe;

end
movie(M)

−5 0 5
−5

0

5

Obviously we can’t show the movie in this book, but you see the last frame above.
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10.

(a)

A1 = [3 4 5; 2 -3 7; 1 -6 1]; b = [2; -1; 3];
format short; x = A1\b

x =

2.6196
-0.2283
-0.9891

A1*x

ans =

2.0000
-1.0000
3.0000

(b)

A2 = [3 -9 8; 2 -3 7; 1 -6 1]; b = [2; -1; 3];
x = A2\b

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 4.189521e-18.

x =

-6.0000
-1.3333
1.0000

A2*x

ans =

2
-1
3

The matrix A2 is singular. In fact,

det(A2)

ans =

0
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(c)

A3 = [1 3 -2 4; -2 3 4 -1; -4 -3 1 2; 2 3 -4 1];
b3 = [1; 1; 1; 1]; x = A3\b3

x =

-0.5714
0.3333
-0.2857

0

A3*x

ans =

1.0000
1.0000
1.0000
1.0000

(d)

syms a b c d x y u v;
A4 = [a b; c d]; A4\[u; v]

ans =

(d*u-b*v)/(d*a-b*c)
-(c*u-v*a)/(d*a-b*c)

det(A4)

ans =

d*a-b*c

The determinant of the coefficient matrix is the denominator in the answer. So one
gets an answer only if the coefficient matrix is non-singular.
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11.

(a)

rank(A1)

ans =

3

rank(A2)

ans =

2

rank(A3)

ans =

4

rank(A4)

ans =

2

MATLAB implicitly assumes that ad − bc is not 0 here.

(b)

Only the second one computed is singular.
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(c)

det(A1)

ans =

92

inv(A1)

ans =

0.4239 -0.3696 0.4674
0.0543 -0.0217 -0.1196
-0.0978 0.2391 -0.1848

det(A2)

ans =

0

The matrix A2 does not have an inverse.

det(A3)

ans =

294

inv(A3)

ans =

0.1837 -0.1531 -0.2857 -0.3163
0 0.1667 0 0.1667

0.1633 0.0306 -0.1429 -0.3367
0.2857 -0.0714 0 -0.2143

det(A4)
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ans =

d*a-b*c

inv(A4)

ans =

[ d/(d*a-b*c), -b/(d*a-b*c)]
[ -c/(d*a-b*c), a/(d*a-b*c)]

12.

(a)

[U1, R1] = eig(A1)

U1 =

-0.9749 0.6036 0.6036
-0.2003 0.0624 + 0.5401i 0.0624 - 0.5401i
0.0977 -0.5522 + 0.1877i -0.5522 - 0.1877i

R1 =

3.3206 0 0
0 -1.1603 + 5.1342i 0
0 0 -1.1603 - 5.1342i

A1*U1 - U1*R1

ans =

1.0e-14 *

0.3109 0.2776 - 0.3997i 0.2776 + 0.3997i
-0.0444 0 - 0.0777i 0 + 0.0777i
-0.0833 0.0999 - 0.1776i 0.0999 + 0.1776i

This is essentially zero. Notice the e-14.

[U2, R2] = eig(A2)
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U2 =

0.9669 0.7405 0.7405
0.1240 0.4574 - 0.2848i 0.4574 + 0.2848i

-0.2231 0.2831 + 0.2848i 0.2831 - 0.2848i

R2 =

-0.0000 0 0
0 0.5000 + 6.5383i 0
0 0 0.5000 - 6.5383i

A2*U2 - U2*R2

ans =

1.0e-14 *

-0.2224 -0.2554 - 0.2665i -0.2554 + 0.2665i
-0.1498 0.0888 0.0888
-0.1156 -0.0222 + 0.0666i -0.0222 - 0.0666i

Same comment as in (a).

[U3, R3] = eig(A3);

max(abs(A3*U3 - U3*R3))

ans =

1.0e-14 *

0.4529 0.4529 0.5245 0.5245

Ditto yet again. (Note that we suppressed the output of the first command, and
took the maximum of the absolute values of the entries in each column of A3*U3
- U3*R3, in order to keep the data from scrolling off the screen.)

[U4, R4] = eig(A4);
pretty(U4)

[ 2 2 1/2
[ 1/2 d - 1/2 a - 1/2 (d - 2 d a + a + 4 b c)
[- ------------------------------------------------ ,
[ c
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2 2 1/2]
1/2 d - 1/2 a + 1/2 (d - 2 d a + a + 4 b c) ]

- ------------------------------------------------]
c ]

[1 , 1]

pretty(R4)

[ 2 2 1/2 ]
[1/2 d + 1/2 a + 1/2 (d - 2 d a + a + 4 b c) , 0]
[ ]
[ 2 2 1/2]
[0 , 1/2 d + 1/2 a - 1/2 (d - 2 d a + a + 4 b c) ]

simplify(A4*U4 - U4*R4)

ans =

[ 0, 0]
[ 0, 0]

(b)

A = [1 0 2; -1 0 4; -1 -1 5];
[U1, R1] = eig(A)

U1 =

-0.8165 0.5774 0.7071
-0.4082 0.5774 -0.7071
-0.4082 0.5774 0.0000

R1 =

2.0000 0 0
0 3.0000 0
0 0 1.0000

B = [5 2 -8; 3 6 -10; 3 3 -7];
[U2, R2] = eig(B)
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U2 =

0.8165 -0.5774 0.7071
0.4082 -0.5774 -0.7071
0.4082 -0.5774 0.0000

R2 =

2.0000 0 0
0 -1.0000 0
0 0 3.0000

We observe that the first and second columns of U1 are negatives of the corresponding
columns of U2, and the third columns are identical. Finally,

A*B - B*A

ans =

0 0 0
0 0 0
0 0 0

13.

(a)

If we set Xn to be the column matrix with entries xn, yn, and zn, and M the square
matrix with entries 1, 1/4, 0; 0, 1/2, 0; 0, 1/4, 1 then Xn+1 = MXn.

(b)

We have Xn = MXn−1 = M2Xn−2 = ... = MnX0.

(c)

M = [1, 1/4, 0; 0, 1/2, 0; 0, 1/4, 1];
[U,R] = eig(M)

U =

1.0000 0 -0.4082
0 0 0.8165
0 1.0000 -0.4082
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R =

1.0000 0 0
0 1.0000 0
0 0 0.5000

(d)

M should be URU−1. Let’s check:

M - U*R*inv(U)

ans =

0 0 0
0 0 0
0 0 0

Since Rn is the diagonal matrix with entries 1, 1, 1/2n, we know that R∞ is the
diagonal matrix with entries 1, 1, 0. Therefore M∞ = UR∞U−1. So

Minf = U*diag([1, 1, 0])*inv(U)

Minf =

1.0000 0.5000 0
0 0 0
0 0.5000 1.0000

(e)

syms x0 y0 z0; X0 = [x0; y0; z0]; Minf*X0

ans =

x0+1/2*y0
0

1/2*y0+z0

Half of the mixed genotype migrates to the dominant genotype and the other half of
the mixed genotype migrates to the recessive genotype. These are added to the two
original pure types, whose proportions are preserved.
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(f)

Mˆ5*X0

ans =

x0+31/64*y0
1/32*y0

31/64*y0+z0

Mˆ10*X0

ans =

x0+1023/2048*y0
1/1024*y0

1023/2048*y0+z0

(g)

With the suggested alternate model, only the first three columns of the table are rel-
evant, the transition matrix M becomes M = [1 1/2 0; 0 1/2 1; 0 0 0].
You can compute that the eventual population distribution is [1 0 0], and is inde-
pendent of the initial population.

14.

The following commands create a JPEG file of the French flag. The set command
has no effect on the JPEG file; we include it only to turn off the axis ticks in the figure
window.

A = zeros(200, 300, 3);
A(:, 1:100, 3) = ones(200, 100);
A(:, 101:200, 1) = ones(200, 100);
A(:, 101:200, 2) = ones(200, 100);
A(:, 101:200, 3) = ones(200, 100);
A(:, 201:300, 1) = ones(200, 100);
image(A); axis equal tight
set(gca, ’XTick’, []), set(gca, ’YTick’, [])
imwrite(A, ’tricolore.jpg’)
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We now redefine the color of the leftmost third of the array and create a JPEG file of
the Italian flag.

A(:, 1:100, 3) = zeros(200, 100);
A(:, 1:100, 2) = ones(200, 100);
image(A); axis equal tight
set(gca, ’XTick’, []), set(gca, ’YTick’, [])
imwrite(A, ’italia.jpg’)

Of course you will have to run the commands above yourself to see the flags in color.
Then you can run the commands below to see a movie transforming the French flag
into the Italian flag.

clear M
for k = 0:10

A(:, 1:100, 3) = (10-k)*ones(200, 100)/10;
A(:, 1:100, 2) = k*ones(200, 100)/10;
M(k+1) = im2frame(A);

end
movie(M)

Solutions to Practice Set C: Developing Your MATLAB Skills

clear all
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1.

(a)

radiation = @(x, y, x0, y0) 10000./(4*pi*((x - x0).ˆ2 + ...
(y - y0).ˆ2 + 1));

x0 = 50*rand(1, 5); y0 = 50*rand(1, 5);
[X, Y] = meshgrid(0:0.1:50, 0:0.1:50);
contourf(X, Y, radiation(X, Y, x0(1), y0(1)) + ...

radiation(X, Y, x0(2), y0(2)) + ...
radiation(X, Y, x0(3), y0(3)) + ...
radiation(X, Y, x0(4), y0(4)) + ...
radiation(X, Y, x0(5), y0(5)), 20)

colormap(’gray’)
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It is not so clear from the picture where to hide, although it looks as if the Captain
has a pretty good chance of surviving a small number of shots. But 100 shots may be
enough to find him. Intuition says he ought to stay close to the boundary.

(b)

Below is a series of commands that places Picard at the center of the arena, fires the
death ray 100 times, and then determines the health of Picard. It uses the following
function M-file lifeordeath.m, which computes the fate of the Captain after a
single shot.

type lifeordeath

function r = lifeordeath(x1, y1, x0, y0)
% This function computes the number of illumatons
% that arrive at the point (x1,y1), assuming that the
% death ray strikes 1 meter above the point (x0,y0).
% If that number exceeds 50, a "1" is returned in the
% variable "r"; otherwise a "0" is returned for "r".
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dosage = 10000/(4*pi*((x1 - x0)ˆ2 + (y1 - y0)ˆ2 + 1));
if dosage > 50

r = 1;
else

r = 0;
end

Here is the series of commands to test the Captain’s survival possibilities:

x1 = 25; y1 = 25; h = 0;
for n = 1:100

x0 = 50*rand;
y0 = 50*rand;
r = lifeordeath(x1, y1, x0, y0);
h = h + r;

end
if h > 0

disp(’The Captain is dead!’)
else

disp(’Picard lives!’)
end

The Captain is dead!

In fact if you run this sequence of commands multiple times, you will see the Captain
die far more often than he lives.

(c)

We now use another M-file, simulation.m, which runs the loop from part (b) 100
times, and reports how many times Picard survives, given his location as input.

type simulation

function c = simulation(x1, y1)
c = 0;
for k = 1:100

h = 0;
for n = 1:100

x0 = 50*rand;
y0 = 50*rand;
r = lifeordeath(x1, y1, x0, y0);
h = h + r;

end
if h == 0

c = c + 1;
end

end
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So let’s do a Monte Carlo simulation to see what his odds are:

x1 = 25; y1 = 25;
disp([’The chances of Picard surviving are ’, ...

num2str(simulation(x1, y1)/100)])

The chances of Picard surviving are 0.13

We ran this simulation a few times and saw survival chances ranging from 8% to 19%.

(d)

x1 = 37.5; y1 = 25;
disp([’The chances of Picard surviving are ’, ...

num2str(simulation(x1, y1)/100)])

The chances of Picard surviving are 0.15

This time the numbers were between 10% and 24%. Let’s keep moving him toward
the periphery.

(e)

x1 = 50; y1 = 25;
disp([’The chances of Picard surviving are ’, ...

num2str(simulation(x1, y1)/100)])

The chances of Picard surviving are 0.46

The numbers now hover between 32% and 47% upon multiple runnings of this sce-
nario; so finally, suppose that he cowers in the corner.

x1 = 50; y1 = 50;
disp([’The chances of Picard surviving are ’, ...

num2str(simulation(x1, y1)/100)])

The chances of Picard surviving are 0.63

We saw numbers between 54% and 68%. They say a brave man dies but a single
time, but a coward dies a thousand deaths. But the person who said that probably
never encountered a Cardassian. Long live Picard!
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2.

(a)

Consider the status of the bank account on the last day of each month. At the end of
the first month, the account has M + M × J = M(1 + J) dollars. Then at the end
of the second month the account contains [M(1 + J)](1 + J) = M(1 + J)2 dollars.
Similarly, at the end of n months, the account will hold M(1 + J)n dollars. So our
formula is

T = M(1 + J)n.

(b)

Now we take M = 0 and S dollars deposited monthly. At the end of the first month
the account has S + S × J = S(1 + J) dollars. The next day, S dollars are added to
that sum, and then at the end of the second month the account contains [S(1 + J) +
S](1 + J) = S[(1 + J)2 + (1 + J)] dollars. Similarly, at the end of n months, the
account will hold S[(1 + J)n + (1 + J)n−1 + · · · + (1 + J)] dollars. Summing the
geometric series, the amount T in the account after n months equals

T = S[((1 + J)n+1 − (J + 1))/((1 + J) − 1)] = S[((1 + J)n+1 − 1)/J − 1].

(c)

By combining the two models it is clear that, in an account with an initial balance M
and monthly deposits S, the amount of money T after n months is given by

T = M(1 + J)n + S[((1 + J)n+1 − 1)/J − 1].

(d)

We are asked to solve the equation

(1 + J)n = 2

with the values J = 0.05/12 and J = 0.1/12.
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months = solve(’(1 + 0.05/12)ˆn = 2’);
years = double(months)/12

years =

13.8918

months = solve(’(1 + 0.1/12)ˆn = 2’);
years = double(months)/12

years =

6.9603

If you double the interest rate, you roughly halve the time required to achieve the
goal.

(e)

format bank
1000000/(((1 + 0.08/12)ˆ(12*35 + 1) - 1)/(0.08/12) - 1)

ans =

433.06

You need to deposit $433.06 every month.

(f)

syms n
T = 300*(((1 + 0.08/12)ˆ(n + 1) - 1)/(0.08/12) - 1);
months = solve(T - 1000000);
years = double(months)/12

years =

39.37

You have to work nearly five more years.
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(g)

First, taking the whole bundle at once, after 20 years the $65,000 left after taxes
generates

option1 = 65000*(1 + 0.05/12)ˆ(12*20)

option1 =

176321.62

The stash grows to about $176,322. The second option yields

S = 0.8*(100000/240);
option2 = S*(((1 + 0.05/12)ˆ(12*20 + 1) - 1)/(0.05/12) - 1)

option2 =

137582.10

You accumulate only $137,582 this way. Taking the lump sum up front is clearly the
better strategy.

(h)

rates = [.13, .15, -.03, .05, .10, .13, .15, -.03, .05];

for k = 0:4
T = 50000;
for j = 1:5

T = T*(1 + rates(k + j));
end
disp([k + 1, T])

end

1.00 72794.74

2.00 72794.74

3.00 72794.74

4.00 72794.74

5.00 72794.74
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The results are all the same; you wind up with $72,795 regardless of where you enter
in the cycle, because the product

∏
1≤j≤5(1 + rates(j)) is independent of the order in

which you place the factors. If you put the $50,000 in a bank account paying 8%, you
get

50000*(1 + 0.08)ˆ5

ans =

73466.40

That is, $73,466 – better than the market. The market’s volatility hurts you compared
with the bank’s stability. But of course that assumes you can find a bank that will pay
8%. Now let’s see what happens with no stash, but an annual investment instead. The
analysis is more subtle here. Set S = 10,000. At the end of one year, the account
contains S(1+ r1); then at the end of the second year [S(1+ r1)+S](1+ r2), where
we have written rj for rates(j). So at the end of five years, the amount in the
account will be the product of S and the number

∏
j≥1

(1 + rj) +
∏
j≥2

(1 + rj) +
∏
j≥3

(1 + rj) +
∏
j≥4

(1 + rj) + (1 + r5).

If you enter at a different year in the business cycle the terms get cycled appropriately.
So now we can compute

for k = 0:4
T = ones(1, 5);
for j = 1:5

TT = 1;
for l = j:5

TT = TT*(1 + rates(k + l));
end
T(j) = TT;

end
disp([k + 1, 10000*sum(T)])

end

1.00 61196.47

2.00 64000.40

3.00 68357.67

4.00 61884.76

5.00 60192.11
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Not surprisingly, all the amounts are less than what one obtains by investing the orig-
inal $50,000 all at once. But in this model it matters where you enter the business
cycle. It’s clearly best to start your investment program when a recession is in force
and end in a boom. Incidentally, the bank model yields in this case

10000*(((1 + 0.08)ˆ6 - 1)/0.08 - 1)

ans =

63359.29

which is better than some investment models and worse than others.

3.

(a)

We can use the expression (rand < 0.338) to compute whether Tony gets a hit
or not during a single at bat, based on a random number chosen between 0 and 1.
If the random number is less than 0.338, the expression evaluates to 1 and Tony is
credited with a hit; otherwise, the expression evaluates to 0 and Tony is retired by the
opposition.

We could simulate a year in Tony’s career by evaluating this expression 500 times in a
loop. More simply, we can put 500 random numbers into this expression at once and
sum the results, dividing by 500 to get his batting average for the year. The following
function does just this, allowing more generally for n at bats in the year, although we
shall use only 500.

yearbattingaverage = @(n) sum(rand(n, 1) < 0.338)/n;

Now we run the function.

format short
yearbattingaverage(500)

ans =

0.3380

(b)

Now let’s write a function M-file that simulates a 20-year career. As with the number
of at bats in a year, we’ll allow for a varying-length career.

type career
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function ave = career(n, k)
% This function file computes the batting average for each
% year in a k-year career, assuming n at bats in each year.
% Then it lists the average for each of the years in the
% career, and finally computes a lifetime average.
Y = zeros(1, k);
for j = 1:k

Y(j) = sum(rand(n, 1) < 0.338)/n;
end
ave = sum(Y)/k;
disp([’Best avg: ’, num2str(max(Y), 4)])
disp([’Worst average: ’, num2str(min(Y), 4)])
disp([’Lifetime avg: ’, num2str(ave, 4)])

Next we run the simulation.

ave1 = career(500, 20);

Best avg: 0.39
Worst average: 0.292
Lifetime avg: 0.3394

(c)

Now we run the simulation four more times:

ave2 = career(500, 20);

Best avg: 0.372
Worst average: 0.294
Lifetime avg: 0.334

ave3 = career(500, 20);

Best avg: 0.382
Worst average: 0.306
Lifetime avg: 0.339

ave4 = career(500, 20);

Best avg: 0.36
Worst average: 0.292
Lifetime avg: 0.3314

ave5 = career(500, 20);

Best avg: 0.38
Worst average: 0.294
Lifetime avg: 0.339
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(d)

The average for the five different 20-year careers is:

(ave1 + ave2 + ave3 + ave4 + ave5)/5

ans =

0.3366

Not bad. In fact if we ran the simulation 100 times and took the average it would be
very close to 0.338.

4.

Our solution and its output is below. First we set n to 500 in order to save typing in
the following lines and make it easier to change this value later. Then we set up a zero
matrix A of the appropriate sizes and begin a loop that successively defines each row
of the matrix. Finally, we extract the maximum value from the list of eigenvalues of
A.

n = 500;
A = zeros(n);
for k = 1:n

A(k,:) = 1./(k:(k + n - 1));
end
max(eig(A))

ans =

2.3769

5.

Again we display below our solution and its output. First we define a vector t of
values between 0 and 2π, in order to be able later to represent circles parametrically
as x = r cos t, y = r sin t. Then we clear any previous figure that might exist and
prepare to create the figure in several steps. Let’s say that the red circle will have
radius 1; then the first black ring should have inner radius 2 and outer radius 3, and
thus the tenth black ring should have inner radius 20 and outer radius 21. We start
drawing from the outside in because the idea is to fill the largest circle in black, then
fill the next largest circle in white leaving only a ring of black, then fill the next largest
circle in black leaving a ring of white, etc. The if statement tests true when r is odd
and false when it is even. We stop the alternation of black and white at a radius of 2
in order to make the last circle red instead of black, then we adjust the axes to make
the circles appear round.
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t = linspace(0, 2*pi, 100);
cla reset; hold on
for r = 21:-1:2

if mod(r,2)
fill(r*cos(t), r*sin(t), ’k’)

else
fill(r*cos(t), r*sin(t), ’w’)

end
end
fill(cos(t), sin(t), ’r’)
axis equal; hold off
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6.

Here are the contents of our solution M-file.

type mylcm

function m = mylcm(varargin)

nums = [varargin{:}];
if ˜isnumeric(nums) | any(nums ˜= round(real(nums))) | ...

any(nums <= 0)
error(’Arguments must be positive integers.’)

end

for k = 2:length(nums);
nums(k) = lcm(nums(k), nums(k-1));

end
m = nums(end);

Here are some examples. First, cases in which it should work:

mylcm([4 5 6])
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ans =

60

mylcm([6 7 12 15])

ans =

420

Next, cases in which we expect an error:

mylcm(4.5, 6)

Error using ==> mylcm
Arguments must be positive integers.

mylcm(’a’, ’b’, ’c’)

Error using ==> mylcm
Arguments must be positive integers.

7.

Here are the contents of our solution M-file.

type letcount

function letcount(file)
if isunix

[stat, str] = unix([’cat ’ file]);
else

[stat, str] = dos([’type ’ file]);
end

letters = ’abcdefghijklmnopqrstuvwxyz’;
caps = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’;
for n = 1:26

count(n) = sum(str == letters(n)) + sum(str == caps(n));
end
bar(count)
ylabel ’Number of occurrences’
title([’Letter frequencies in ’ file])
set(gca, ’XLim’, [0 27], ’XTick’, 1:26, ’XTickLabel’, ...

letters’)
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Here is the output when we run this M-file on itself.

letcount(’letcount.m’)
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Letter frequencies in letcount.m

8.

We let w, x, y, and z denote the number of residences canvassed in the four cities
Gotham, Metropolis, Oz, and River City, respectively. Then the linear inequalities
specified by the given data are as follows:

• Non-negative data: w ≥ 0, x ≥ 0, y ≥ 0, z ≥ 0;
• Pamphlets: w + x + y + z ≤ 50,000;
• Travel cost: 0.5w + 0.5x + y + 2z ≤ 40,000;
• Time available: 2w + 3x + y + 4z ≤ 18,000;
• Preferences: w ≤ x, x + y ≤ z;
• Contributions: w + 0.25x + 0.5y + 3z ≥ 10,000.

The quantity to be maximized is as follows:

• Voter support: 0.6w + 0.6x + 0.5y + 0.3z.

(a)

This enables us to set up and solve the Linear Programming problem in MATLAB as
follows:

f = [-0.6 -0.6 -0.5 -0.3];
A = [1 1 1 1; 0.5 0.5 1 2; 2 3 1 4; 1 -1 0 0; 0 1 1 -1; ...

-1 -0.25 -0.5 -3; -1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 -1];
b = [50000; 40000; 18000; 0; 0; -10000; 0; 0; 0; 0];
simlp(f, A, b)
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ans =

1.0e+03 *

1.2683
1.2683
1.3171
2.5854

Jane should canvass 1268 residences in each of Gotham and Metropolis, 1317 resi-
dences in Oz, and 2585 residences in River City.

(b)

If the allotment for time doubles, then

b = [50000; 40000; 36000; 0; 0; -10000; 0; 0; 0; 0];
simlp(f, A, b)

ans =

1.0e+03 *

4.0000
4.0000
-0.0000
4.0000

Jane should canvass 4000 residences in each of Gotham, Metropolis, and River City,
and ignore Oz.

(c)

Finally, if in addition she needs to raise $20,000 in contributions, then

b = [50000; 40000; 36000; 0; 0; -20000; 0; 0; 0; 0];
simlp(f, A, b)

ans =

1.0e+03 *

2.5366
2.5366
2.6341
5.1707

Jane needs to canvass 2537 residences in each of Gotham and Metropolis, 2634 resi-
dences in Oz, and 5171 in River City.
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9.

We let w, x, y, and z denote the numbers of hours that Joe spends with the quarter-
back, the running backs, the receivers, and the linemen, respectively. Then the linear
inequalities specified by the given data are as follows:

• Non-negative data: w ≥ 0, x ≥ 0, y ≥ 0, z ≥ 0;
• Time available: w + x + y + z ≤ 50;
• Point production: 0.5w + 0.3x + 0.4y + 0.1z ≥ 20;
• Criticisms: w + 2x + 3y + 0.5z ≤ 75;
• Prima-donna status: x = y, w ≥ x + y, x ≥ z.

The quantity to be maximized is:

• Personal satisfaction: 0.2w + 0.4x + 0.3y + 0.6z.

(a)

This enables us to set up and solve the Linear Programming problem in MATLAB as
follows:

f = [-0.2 -0.4 -0.3 -0.6];
A = [1 1 1 1; -0.5 -0.3 -0.4 -0.1; 1 2 3 0.5; 0 -1 1 0; ...

0 1 -1 0; -1 1 1 0; 0 -1 0 1; -1 0 0 0; 0 -1 0 0; ...
0 0 -1 0; 0 0 0 -1];

b = [50; -20; 75; 0; 0; 0; 0; 0; 0; 0; 0];
simlp(f, A, b)

ans =

25.9259
9.2593
9.2593
5.5556

Joe should spend 9.3 hours each with the running backs and receivers; 5.6 hours with
the linemen; and the majority of his time, 25.9 hours, with the quarterback.

(b)

If the team needs only 15 points to win, then

b = [50; -15; 75; 0; 0; 0; 0; 0; 0; 0; 0];
simlp(f, A, b)
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ans =

20.0000
10.0000
10.0000
10.0000

Joe can spread his time more evenly, 10 hours each with the running backs, receivers
and linemen; but still the biggest chunk of his time, 20 hours, with the quarterback.

(c)

Finally, if in addition the number of criticisms is reduced to 70, then

b = [50; -15; 70; 0; 0; 0; 0; 0; 0; 0; 0];
simlp(f, A, b)

ans =

18.6667
9.3333
9.3333
9.3333

Joe must spend 182
3 hours with the quarterback, and 91

3 hours with each of the other
three groups. Notice that the total is less than 50, leaving Joe some free time to tend
to his NASCAR teams.

10.

We let f be the quantity to be set to zero. It is a function of the diode voltage, VD,
and the parameters V0, R, I0, and VT. Notice that f should be zero for some value
between 0 and V0.

f = @(V, V0, R, I0, VT) V - V0 + R*I0*exp(V/VT);

(a)

f1 = @(V) f(V, 1.5, 1000, 10ˆ(-5), .0025);
VD = fzero(f1, [0, 1.5])

VD =

0.0125
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That’s the voltage; the current is therefore

I = (1.5 - VD)/1000

I =

0.0015

(b)

f2 = @(V) f(V, 1.5, 1000, 10ˆ(-5)/2, .0025);
fzero(f2, [0, 1.5])

ans =

0.0142

Not surprisingly, the voltage goes up slightly.

(c)

f2 = @(V) f(V, 1.5, 1000, 10ˆ(-5), .0025/2);
fzero(f2, [0, 1.5])

Error using ==> fzero
Function values at interval endpoints must be finite and real.

The problem is that the values of the exponential are too big at the right-hand endpoint
of the test interval. We have to specify an interval big enough to catch the solution,
but small enough to prevent the exponential from blowing up too drastically at the
right-hand endpoint. This will be the case even more dramatically in part (e) below.

fzero(f2, [0, 0.5])

ans =

0.0063

This time the voltage goes down.
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(d)

Next we halve both:

f2 = @(V) f(V, 1.5, 1000, 10ˆ(-5)/2, .0025/2);
fzero(f2, [0, 0.5])

ans =

0.0071

The voltage is less than in part (b) but more than in part (c).

(e)

X = 10.ˆ(0:-1:-5);
f3 = @(V, x) f(V, 1.5, 1000, 10ˆ(-5)*x, .0025*x);
VD = 0:5; % initialize vector of VD-values
for j = 1:6

f4 = @(V) f3(V, X(j));
VD(j) = fzero(f4, [0, X(j)/10]);

end
loglog(10ˆ(-5)*X, VD, ’x-’)
xlabel ’I_0’
ylabel ’V_D’
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The loglog plot appears linear. This suggests that VD is roughly a constant times a
power of I0.

11.

(a)

dsolve(’Dx = x - xˆ2’)
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ans =

1/(1+exp(-t)*C1)

syms x0; sol = dsolve(’Dx = x - xˆ2’, ’x(0) = x0’)

sol =

1/(1-exp(-t)*(-1+x0)/x0)

Note that this includes the zero solution; indeed,

bettersol = simplify(sol)

bettersol =

-x0/(-x0-exp(-t)+exp(-t)*x0)

subs(bettersol, x0, 0)

ans =

0

(b)

We have already solved the equation in (a) above, so all we need to do is to substitute
the initial conditions in for x0 and plot the results. We increase the LineWidth
from its default value so that the zero solution stands out better.

T = 0:0.1:5;

cla reset; hold on
solcurves = @(t,x0) eval(vectorize(bettersol));
for initval = 0:0.25:2.0

plot(T, solcurves(T, initval), ’LineWidth’, 1.5)
end
axis tight
title ’Solutions of Dx = x - xˆ2, with x(0) = 0, 0.25, ..., 2’
xlabel ’t’
ylabel ’x’
hold off
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The graphical evidence suggests that the solution that starts at zero stays there; all the
others tend toward the constant solution 1.

(c)

To use ode45, we want to write the differential equations as a single equation in a
vector variable x. Its two components represent the two populations x and y.

cla reset; hold on
f = @(t,x) [x(1) - x(1)ˆ2 - 0.5*x(1)*x(2); ...

x(2) - x(2)ˆ2 - 0.5*x(1)*x(2)];
for a = 0:1/12:13/12

for b = 0:1/12:13/12
[t, xa] = ode45(f, [0 3], [a, b]);
plot(xa(:, 1), xa(:, 2))

end
end
axis([0 13/12 0 13/12]); hold off
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(d)

The endpoints on the curves are the start points. So clearly any curve that starts inside
the first quadrant, that is one that corresponds to a situation in which both populations
are present at the outset, tends toward a unique point – which from the graph appears
to be about (2/3, 2/3). In fact, if x = y = 2/3, then the right-hand sides of both
equations in (C.4) vanish, so the derivatives are zero and the values of x(t) and y(t)
remain constant – they don’t depend on t. If only one species is present at the outset,
that is you start out on one of the axes, then the solution tends toward either (1, 0)
or (0, 1) depending on whether x or y is the species present. That is precisely the
behavior we saw in part (b).

(e)

cla reset; hold on
f = @(t,x) [x(1) - x(1)ˆ2 - 2*x(1)*x(2); ...

x(2) - x(2)ˆ2 - 2*x(1)*x(2)];
for a = 0:1/12:13/12

for b = 0:1/12:13/12
[t, xa] = ode45(f, [0 3], [a, b]);
plot(xa(:, 1), xa(:, 2))

end
end
axis([0 13/12 0 13/12]); hold off
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This time most of the curves seem to be tending toward one of the points (1, 0) or
(0, 1) – in particular, any solution curve that starts on one of the axes (corresponding
to no initial population for the other species) does so. It seems that whichever species
has a greater population at the outset will eventually take over all the population –
the other will die out. But there is a delicate balance in the middle – it appears that,
if the two populations are about equal at the outset, then they tend to the unique
population distribution at which, if you start there, nothing happens. That value looks
like (1/3, 1/3). In fact, that is the value that renders both sides of (C.5) zero – which
is analogous to the role (2/3, 2/3) had in part (d).
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(f)

It makes sense to refer to the model (C.4) as “peaceful coexistence,” since whatever
initial populations you have – provided that both are present – you wind up with equal
populations eventually. “Doomsday” is an appropriate name for model (C.5) since, if
you start out with unequal populations, then the smaller group becomes extinct. The
lower coefficient 0.5 means relatively small interaction between the species, allowing
their coexistence. The larger coefficient 2 means stronger interaction and competition
precluding the survival of both.

12.

Here is a Simulink model for redoing the pendulum application from Chapter 9:

open_system pendulum

sin x

XY Graph
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         x’
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         x’

With the initial conditions x(0) = 0 and ẋ(0) = 10, the XY Graph block shows the
following phase portrait of x versus ẋ.

[t, x] = sim(’pendulum’);
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Meanwhile, the Scope block gives the following graph of x as a function of t.
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simplot(t, x(:,1))
axis([0 30 0 15])
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13.

Here is a Simulink model for studying the equation of motion of a baseball.

open_system baseball

y vs. t

magnitude
of velocity

[80,80] initial
velocity

XY Graph
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The way this works is fairly straightforward. The Integrator block in the upper left
integrates the acceleration (a vector quantity) to get the velocity (also a vector). This
block requires the initial value of the velocity as an initial condition; we define it in
the “initial velocity” Constant block. Output from the first Integrator goes into the
second Integrator, which integrates the velocity to get the position (also a vector).
The initial condition for the position, [0, 4], is stored in the parameters of this
second Integrator. The position vector is fed into a Demux block, which splits off
the horizontal and vertical components of the position. These are fed into the XY
Graph block, and also the vertical component is fed into a scope block so that we can
see the height of the ball as a function of time. The hardest part is the computation
of the right-hand side of (C.7). This is computed by adding the two terms on the
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right with the Sum block near the lower left. The value of [0, -g] is stored in the
“gravity” Constant block. The second term on the right is computed in the Product
block labeled “Compute acceleration due to drag,” which multiplies the velocity (a
vector) by −c times the speed (a scalar). We compute the speed by taking the dot
product of the velocity with itself and then taking the square root; then we multiply
by −c in the Gain block in the middle bottom of the model. The Scope block in the
lower right plots the ball’s speed as a function of time.

(a)

With c set to 0 (no air resistance) and the initial velocity set to [80, 80], the ball follows
a familiar parabolic trajectory, as seen in the following picture.

[t, x] = sim(’baseball’);
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Note that the ball travels about 400 feet before hitting the ground, so the trajectory
is just about what is required for a home run in most ballparks. We can read off the
flight time and final speed from the other two scopes:

simplot(t, x(:,2))
axis([0 10 0 150])
title ’Height versus Time’



280 Solutions to the Practice Sets

0 2 4 6 8 10
0

50

100

150

Time

Height versus Time

simplot(t, sqrt(x(:,3).ˆ2 + x(:,4).ˆ2))
axis([0 10 50 300])
title ’Speed versus Time’
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Thus the ball stays in the air about 5.0 seconds and is traveling at about 115 ft/sec
when it hits the ground. (Notice that the simulation continues beyond this time; since
the model doesn’t take into account hitting the ground, the height continues to de-
crease and the velocity continues to increase as if the ball had been batted off a cliff.)

Now let’s see what happens when we factor in air resistance, again with the initial
velocity set to [80, 80]. First we take c = 0.0017. The trajectory now looks like this:

set_param(’baseball/Gain’, ’Gain’, ’-0.0017’)
[t, x] = sim(’baseball’);
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Note the enormous difference air resistance makes; the ball travels only about 270
feet. We can also investigate the flight time and speed with the other two scopes:

simplot(t, x(:,2))
axis([0 10 0 150])
title ’Height versus Time’
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simplot(t, sqrt(x(:,3).ˆ2 + x(:,4).ˆ2))
axis([0 10 50 300])
title ’Speed versus Time’
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So the ball is about 80 feet up in the air at its peak, and hits the ground in about 4.5
seconds.

(b)

Let’s now redo exactly the same calculation with c = 0.0014 (corresponding to play-
ing in Denver). The ball’s trajectory is now

set_param(’baseball/Gain’, ’Gain’, ’-0.0014’)
[t, x] = sim(’baseball’);
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The ball goes about 285 feet, or about 15 feet further than when playing at sea level.
This particular ball is probably an easy play, but, with some hard-hit balls, those extra
15 feet could mean the difference between an out and a home run. If we look at the
height scope for the Denver calculation, we see:

simplot(t, x(:,2))
axis([0 10 0 150])
title ’Height versus Time’
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so there is a very small increase in the flight time. Similarly, if we look at the speed
scope for the Denver calculation, we see:

simplot(t, sqrt(x(:,3).ˆ2 + x(:,4).ˆ2))
axis([0 10 50 300])
title ’Speed versus Time’
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So the final speed is a bit faster, about 83 ft/sec.

(c)

One would expect that batting averages and earned run averages would both be higher
in Denver, as indeed is the case according to Major League Baseball statistics.

14.

The following M-file performs the desired task:
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type editrecent

function editrecent

directory = dir(’*.m’);
if any(size(directory) == 0)

error(’No M-files found.’)
end
dates = datenum({directory.date});
[maximum, index] = max(dates);
edit(directory(index).name)

By assigning the output of dir to a variable, we get a structure array that contains
among other things the names of all the M-files in the current directory and their
modification dates. If the structure array has 0 elements, we print an error message.
Otherwise, we form the dates into a cell array of strings, and use datenum to convert
the strings into numbers. We find the index of the largest number, indicating the most
recent date, and finally pass the name of the corresponding file to edit.

15.

As suggested in the hint, we start by defining an array Z of complex numbers whose
real parts are chosen from the vector xvals and whose imaginary parts are chosen
from the vector yvals.

xvals = linspace(-2, 2, 400);
yvals = linspace(-1.5, 1.5, 300);
[X, Y] = meshgrid(xvals, yvals);
Z = X + i*Y;

Next we then apply the given function 100 times to each number in the array. By that
time, most of the sequences that are going to diverge to infinity have already become
larger than the largest floating-point number that MATLAB can store.

for k = 1:100
Z = Z.ˆ2 - 0.75;

end

We now use isfinite to assign a value of 1 to the values in the array that are
still finite floating-point numbers and 0 to those that have diverged. We then use
imagesc to color the points with ones differently from those with zeros, and select a
gray colormap to make the colors white and black. Finally, we use set to reverse the
vertical axis; without this command, the lower numbers would appear at the top of the
graph. This is the default for image and imagesc, but is not the way mathematical
graphs are normally drawn.
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clf reset
set(gcf, ’Color’, ’White’)
imagesc(xvals, yvals, isfinite(Z))
colormap(gray)
set(gca, ’YDir’, ’normal’)
axis equal tight
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The Julia set consists (approximately) of the boundary between the black and white
regions. This boundary is an example of a “fractal,” and you can draw a variety of
other fractals by changing the expression z2 − 0.75. For example, try changing 0.75
to 0.75 + 0.1i and see what a difference it makes!





Glossary

We present here the most commonly used MATLAB objects in six categories: op-
erators, built-in constants, built-in functions, commands, graphics commands, and
MATLAB programming constructs. After this we list the most important Simulink
commands and blocks. Though MATLAB does not distinguish between commands
and functions, it is convenient to think of a MATLAB function as we normally think of
mathematical functions. A MATLAB function is something that can be evaluated or
plotted; a command is something that manipulates data or expressions or that initiates
a process.

We list each operator, function, and command together with a short description
of its effect, followed by one or more examples. Many MATLAB commands can
appear in a number of different forms, because you can apply them to different kinds
of objects. In our examples, we have illustrated the most commonly used forms of
the commands. Many commands also have numerous optional arguments; in this
Glossary, we have included only some very common options. You can find a full
description of all forms of a command, and get a more complete accounting of all the
optional arguments available for it, by reading the help text – which you can access
by typing either help <commandname> or doc <commandname>.

This Glossary is not comprehensive. We have selected those MATLAB com-
mands that play a prominent role in this book, or that we believe will be most helpful
to the user. You can find a more comprehensive list in the Help Browser.

☞ See Online Help in Chapter 2 for a detailed description of the Help Browser.

MATLAB Operators

\ Left matrix division. X = A\B is the solution of the equation A*X = B. Type help
slash for more information.
A = [1 0; 2 1]; B = [3; 5];
A\B

/ Ordinary scalar division, or right matrix division. For matrices, A/B is essentially equiv-
alent to A*inv(B). Type help slash for more information.

* Scalar or matrix multiplication. See the online help for mtimes.

. Not a true MATLAB operator. Used in conjunction with arithmetic operators to force
element-by-element operations on arrays. Also used to access fields of a structure array.
a = [1 2 3]; b = [4 -6 8];
a.*b
syms x y; solve(x + y - 2, x - y); ans.x

.* Element-by-element multiplication of arrays. See the previous entry and the online help
for times.

ˆ Scalar or matrix powers. See the online help for mpower.
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.ˆ Element-by-element powers. See the online help for power.

: Range operator, used for defining vectors and matrices. Type help colon for more
information.

, Separates elements of a row of a matrix, or arguments to a command. Can also be used
to separate commands on a command line.

; Suppresses output of a MATLAB command, and can be used to separate commands on a
command line. Also used to separate the rows of a matrix or column vector.
X = 0:0.1:30;
[1; 2; 3]

’ Complex conjugate transpose of a matrix. See ctranspose. Also delimits the begin-
ning and end of a string.

.’ Transpose of a matrix. See transpose.

... Line-continuation operator. Cannot be used inside quoted strings. Type help
punct for more information.
1 + 3 + 5 + 7 + 9 + 11 ...

+ 13 + 15 + 17
[’This is a way to create very long strings that ’, ...
’span more than one line. Note the square brackets.’]

! Runs a command from the operating system.
!C:\Programs\program.bat

% Comment. MATLAB will ignore the rest of the same line.

%% Starts a new cell (if it occurs at the beginning of a line in a script M-file).

@ Creates a function handle or anonymous function.
fminbnd(@cos, 0, 2*pi)
f = @(x) x.ˆ2 - x

Built-in Constants

eps Roughly the size of the computer’s floating-point round-off error; on most computers
it is around 2 × 10−16.

exp(1) e = 2.71828 . . .. Note that e has no special meaning.

i i =
√−1. This assignment can be overridden, e.g., if you want to use i as an index in a

for loop. In that case j can be used for the imaginary unit.

Inf ∞. Also inf.

NaN Not a number. Used for indeterminate expressions like 0/0.

pi π = 3.14159 . . ..

Built-in Functions

abs |x|.
acos arccos x.

asin arcsin x.
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atan arctan x. Use atan2 instead if you want the angular coordinate θ of the point
(x, y).

bessel Bessel functions; besselj(n, x) and bessely(n, x) are linearly inde-
pendent solutions of Bessel’s equation of order n.

conj Gives the complex conjugate of a complex number.
conj(1 - 5*i)

cos cos x.

cosh cosh x.

cot cot x.

erf The error function erf(x) = (2/
√

π)
∫ x

0
e−t2 dt.

exp ex.

expm Matrix exponential.

gamma The gamma function Γ(x) =
∫ ∞
0

e−ttx−1dt (when Re x > 0). The property
Γ(k + 1) = k!, for non-negative integers k, is sometimes useful.

imag imag(z), the imaginary part of a complex number.

log The natural logarithm lnx = loge x.

real real(z), the real part of a complex number.

sec sec x.

sech sech x.

sign Returns −1, 0, or 1, depending on whether the argument is negative, zero, or positive.

sin sin x.

sinh sinhx.

sqrt
√

x.

tan tan x.

tanh tanh x.

MATLAB Commands

addpath Adds the specified directory to MATLAB’s file-search path.
addpath C:\my_mfiles

ans A variable holding the value of the most recent unassigned output.

cd Makes the specified directory the current (working) directory.
cd C:\mydocs\mfiles

char Converts a symbolic expression into a string. Useful for defining inline functions.
syms x y; f = inline(char(sin(x)*sin(y)))

clear Clears values and definitions for variables and functions. If you specify one or
more variables, then only those variables are cleared.
clear
clear f g

collect Collects coefficients of powers of the specified symbolic variable in a given
symbolic expression.
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syms x y; collect(xˆ2 - 2*y*xˆ2 + 3*x + x*y, x)

compose Composition of functions.
syms x y; f = exp(x); g = sin(y); h = compose(f, g)

ctranspose Conjugate transpose of a matrix. Usually invoked with the ’ operator.
Equivalent to transpose for real matrices.
A = [1 3 i]
A’

D Not a true MATLAB command. Used in dsolve to denote differentiation. See diff.
dsolve(’x*Dy + y = sin(x)’, ’x’)

delete Deletes a file.
delete <filename>

det The determinant of a matrix.
det([1 3; 4 5])

diag Gives a square matrix with a prescribed diagonal vector, or picks out the diagonal in
a square matrix.
V = [2 3 4 5]; diag(V)
X = [2 3; 4 5]; diag(X)

diary Writes a transcript of a MATLAB session to a file.
diary <filename>
diary off

diff Symbolic differentiation operator (also difference operator).
syms x; diff(xˆ3)
diff(’x*yˆ2’, ’y’)

dir Lists the files in the current working directory. Similar to ls.

disp Displays output without first giving its name.
x = 5.6; disp(x)
syms x; disp(xˆ2)
disp(’This will print without quotes.’)

doc Opens the Help Browser to documentation on a specific command.
doc print

double Gives a double-precision value for either a numerical or a symbolic quantity. Ap-
plied to a string, double returns a vector of ASCII codes for the characters in the string.
z = sym(’pi’); double(z)
double(’think’)

dsolve Symbolic ODE solver. By default, the independent variable is t, but a different
variable can be specified as the last argument.
dsolve(’D2y - x*y = 0’, ’x’)
dsolve(’Dy + yˆ2 = 0’, ’y(0) = 1’, ’x’)
[x, y] = dsolve(’Dx = 2x + y’, ’Dy = -x’)

echo Turns on or off the echoing of commands inside script M-files.

edit Opens the specified M-file in the Editor/Debugger.
edit mymfile

eig Computes eigenvalues and eigenvectors of a square matrix.
eig([2, 3; 4, 5])
[e, v] = eig([1, 0, 0; 1, 1, 1; 1, 2, 4])



291

end Last entry of a vector. Also a programming command.
v(end)
v(3:end)

eval Evaluates a string as a MATLAB expression. Useful in M-files.
eval(’cos(x)’)

expand Expands an algebraic expression.
syms x y; expand((x - y)ˆ2)

eye The identity matrix of the specified size.
eye(5)

factor Factors a polynomial or integer.
syms x y; factor(xˆ4 - yˆ4)

feval Evaluates a function specified by a string. Useful in function M-files.
feval(’exp’, 1)

find Finds the indices of non-zero elements of a vector or matrix.
X = [2 0 5]; find(X)

fminbnd Finds the smallest (approximate) value of a function over an interval.
fminbnd(@(x) xˆ4 - xˆ2 + 1, 0, 1)

format Specifies the output format for numerical variables.
format long

fzero Tries to find a zero of the specified function near a given starting point or on a
specified interval.
fzero(@(x) cos(x) - x, 1)
fzero(@cos, [-pi 0])

guide Opens the GUI Design Environment.
guide mygui

help Asks for documentation for a MATLAB command. See also lookfor.
help factor

inline Constructs a MATLAB inline function from a string expression.
f = inline(’xˆ5 - x’); f(3)

int Integration operator for both definite and indefinite integrals.
int(’1/(1 + xˆ2)’, ’x’)
syms x; int(exp(-x), x, 0, Inf)

inv Inverse of a square matrix.
inv([1 2; 3 5])

jacobian Computes the Jacobian matrix, or, for a scalar function, the symbolic gradient.
syms x y; f = xˆ2*yˆ3; jacobian(f)

length Returns the number of elements in a vector or string.
length(’abcde’)

limit Finds a two-sided limit, if it exists. Use ’right’ or ’left’ for one-sided limits.
syms x; limit(sin(x)/x, x, 0)
syms x; limit(1/x, x, Inf, ’left’)

linspace Generates a vector of linearly spaced points.
linspace(0, 2*pi, 30)

load Loads Workspace variables from a disk file.
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load filename

lookfor Searches for a specified string in the first line of all M-files found in the MAT-
LAB path.
lookfor ode

ls Lists files in the current working directory. Similar to dir.

maple Provides direct access to the Maple kernel. Not available in the Student Version.
maple(’csgn’, ’-1+i’)

mhelp Queries the Maple kernel for help on a Maple command. Not available in the
Student Version.
mhelp csgn

max Computes the arithmetic maximum of the entries of a vector.
X = [3 5 1 -6 23 -56 100]; max(X)

mean Computes the arithmetic average of the entries of a vector.
X = [3 5 1 -6 23 -56 100]; mean(X)

median Computes the arithmetic median of the entries of a vector.
X = [3 5 1 -6 23 -56 100]; median(X)

min Computes the arithmetic minimum of the entries of a vector.
X = [3 5 1 -6 23 -56 100]; min(X)

more Turns on (or off) page-by-page scrolling of MATLAB output. Use the SPACE BAR

to advance to the next page, the RETURN key to advance line-by-line, and Q to abort the
output.
more on, help print
more off

notebook Opens an M-Book (Windows only).
notebook problem1.doc
notebook -setup

num2str Converts a number to a string. Useful in programming.
disp([’The value of pi is ’, num2str(pi)])

ode45 Numerical ODE solver for first-order equations. See MATLAB’s online help for
ode45 for a list of other MATLAB ODE solvers.
[t, y] = ode45(@(t, y) tˆ2 + y, [0 10], 1);
plot(t, y)

ones Creates a matrix of ones.
ones(3)
ones(3, 1)

open Opens a file. The way this is done depends on the filename extension.
open myfigure.fig

path Without an argument, displays the search path. With an argument, sets the search
path. Type help path for details.

pathtool Opens the “Set Path” tool.

pretty Displays a symbolic expression in a more readable format.
syms x y; expr = x/(x - 3)/(x + 2/y)
pretty(expr)

prod Computes the product of the entries of a vector.
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X = [3 5 1 -6 23 -56 100]; prod(X)

publish Runs an M-file and “publishes” it. The default is to publish to html, but one
can specify other formats.
publish(’mymfile’, ’latex’)

pwd Shows the name of the current (working) directory.

quadl Numerical integration command. In MATLAB 5.3 or earlier, use quad8 instead.
format long; quadl(@(x) sin(exp(x)), 0, 1)
g = inline(’sin(exp(x))’); quad8(g, 0, 1)

quit Terminates a MATLAB session.

rand Random-number generator; creates arrays of random numbers between 0 and 1.

randn Normal random-number generator; creates arrays of normal random numbers with
mean 0 and variance 1.

rank Gives the rank of a matrix.
A = [2 3 5; 4 6 8]; rank(A)

roots Finds the roots of a polynomial whose coefficients are given by the elements of the
vector argument.
roots([1 2 2])

round Rounds a number to the nearest integer.

save Saves Workspace variables to a specified file. See also diary and load.
save filename

simple Attempts to simplify an expression using multiple methods.
syms x y;
[expression, how] = simple(sin(x)*cos(y) + cos(x)*sin(y))

simplify Attempts to simplify an expression symbolically.
syms x; simplify(1/(1 + x)ˆ2 - 1/(1 - x)ˆ2)

size Returns the number of rows and the number of columns in a matrix.
A = [1 3 2; 4 1 5]
[r, c] = size(A)

solve Solves an equation or set of equations. If the right-hand side of the equation is
omitted, “0” is assumed.
solve(’2*xˆ2 - 3*x + 6’)
[x, y] = solve(’x + 3*y = 4’, ’-x - 5*y = 3’, ’x’, ’y’)

sound Plays a vector through the computer speakers.
sound(sin((0:0.1:1000)*pi))

str2num Converts a string to a number. Useful in programming.
constant = ’a7’
index = str2num(constant(2))

subs Substitutes for parts of an expression.
subs(’xˆ3 - 4*x + 1’, ’x’, 2)
subs(’sin(x)ˆ2 + cos(x)’, ’sin(x)’, ’z’)

sum Sums a vector, or sums the columns of a matrix.
k = 1:10; sum(k)

sym Creates a symbolic variable or number.
sym pi
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x = sym(’x’)
constant = sym(’1/2’)

syms Defines symbolic variables – syms x is equivalent to x = sym(’x’).
syms x y z

symsum Performs a symbolic summation of a vector, possibly with infinitely many entries.
syms x k n; symsum(xˆk, k, 0, n)
syms n; symsum(nˆ(-2), n, 1, Inf)

taylor Gives a Taylor polynomial approximation with a specified number of terms (the
default is 6) at a specified point (default 0). Note: the number of terms includes the
constant term, so the default is a polynomial of degree 5, not degree 6.
syms x; taylor(cos(x), 8, 0)
taylor(exp(1/x), 10, Inf)

transpose Transpose of a matrix (compare ctranspose). Converts a column vector
into a row vector, and vice versa. Usually invoked with the .’ operator.
A = [1 3 4]
A.’

type Displays the contents of a specified file.
type myfile.m

vectorize Vectorizes a symbolic expression. Useful in defining inline functions.
f = inline(vectorize(’xˆ2 - 1/x’))

vpa Evaluates an expression to the specified degree of accuracy using variable-precision
arithmetic.
vpa(’1/3’, 20)

web Opens a web browser.
web(’http://www.mathworks.com’)

which Displays the pathname of a command with a given name.
which ezplot
which ezplot -all

whos Lists current information on all the variables in the Workspace.

zeros Creates a matrix of zeros.
zeros(10)
zeros(3, 1)

Graphics Commands

area Produces a shaded graph of the area between the x-axis and a curve.
X = (0:0.01:4)*pi; Y = sin(X); area(X, Y)

axes Creates an empty figure window.

axis Sets axis scaling and appearance.
axis([xmin xmax ymin ymax]) – sets ranges for the axes.
axis tight – sets the axis limits to the full range of the data.
axis equal – makes the horizontal and vertical scales equal.
axis square – makes the axis box square.
axis off – hides the axes and tick marks.

bar Draws a bar graph.
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bar([2, 7, 1.5, 6])

cla Clears axes.

close Closes the current figure window. close all closes all figure windows.

colormap Sets the colormap features of the current figure; type help graph3d to see
examples of colormaps.
ezmesh sin(x)*cos(y); colormap cool

comet Displays an animated parametric plot.
t = (0:0.01:4)*pi; comet(t.*cos(t), t.*sin(t))

contour Plots the level curves of a function of two variables; usually used with
meshgrid.
[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);
contour(X, Y, X.ˆ2 - Y.ˆ2)

contourf Filled contour plot. Often used with colormap.
[X,Y] = meshgrid(-2:0.1:2, -2:0.1:2);
contourf(X, Y, X.ˆ2 - Y.ˆ3);
colormap autumn

ezcontour Easy plot command for contour or level curves.
ezcontour(’xˆ2 - yˆ2’)
syms x y; ezcontour(x - yˆ2)

ezmesh Easy plot command for mesh view of surfaces.
ezmesh(’xˆ2 + yˆ2’)
syms x y; ezmesh(x*y)

ezplot Easy plot command for symbolic expressions.
ezplot(’exp(-xˆ2)’, [-5, 5])
syms x; ezplot(sin(x))

ezplot3 Easy plot command for 3D parametric curves.
ezplot3(’cos(t)’, ’sin(t)’, ’t’)
syms t; ezplot3(1 - cos(t), t - sin(t), t, [0 4*pi])

ezsurf Easy plot command for standard shaded view of surfaces.
ezsurf(’(xˆ2 + yˆ2)*exp(-(xˆ2 + yˆ2))’)
syms x y; ezsurf(sin(x*y), [-pi pi -pi pi])

figure Creates a new figure window.

fill Creates a filled polygon. See also patch.
fill([0 1 1 0], [0 0 1 1], ’b’); axis equal tight

findobj Finds graphics objects with specified property values.
findobj(’Type’, ’Line’)

gca Gets current axes.

gcf Gets current figure.

get Gets properties of a figure.
get(gcf)

getframe Command to get the frames of a movie or animation.
T = (0:0.01:2)*pi;
for j = 1:12

plot(5*cos(j*pi/6) + cos(T), 5*sin(j*pi/6) + sin(T));
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axis([-6 6 -6 6]);
M(j) = getframe;

end
movie(M)

ginput Gathers coordinates from a figure using the mouse (press the ENTER or RETURN

key to finish).
[X, Y] = ginput

grid Puts a grid on a figure.

gtext Places a text label using the mouse.
gtext(’Region of instability’)

hist Draws a histogram.
hist(rand(200, 1))

hold Holds the current graph. Superimpose any new graphics generated by MATLAB on
top of the current figure.
hold on
hold off

image Displays a matrix as an image.
image(ones(50,100))

imagesc Like image, but scales the data if necessary.
imagesc(randn(50,100))

imread Reads in a graphics file and converts it to a matrix.
A = imread(’myimage.jpg’);

imwrite Converts a matrix into a graphics file.
imwrite(A, ’picture.jpg’)

legend Creates a legend for a figure.
t = 0:0.1:2*pi;
plot(t, cos(t), t, sin(t))
legend(’cos(t)’, ’sin(t)’)

loglog Creates a log-log plot.
x = 0.0001:0.1:12; loglog(x, x.ˆ5)

mesh Draws a mesh surface.
[X,Y] = meshgrid(-2:.1:2, -2:.1:2);
mesh(X, Y, sin(pi*X).*cos(pi*Y))

meshgrid Creates a vector array that can be used as input to a graphics command, for
example, contour, quiver, or surf.
[X, Y] = meshgrid(0:0.1:1, 0:0.1:2)
contour(X, Y, X.ˆ2 + Y.ˆ2)

movie Plays back a movie. See the entry for getframe.

movieview Similar to movie, but has a playback button.

patch Creates a filled polygon or colored surface patch. See also fill.
t = (0:1:5)*2*pi/5; patch(cos(t), sin(t), ’r’); axis equal

pie Draws a pie plot of the data in a vector.
Z = [34 5 32 6]; pie(Z)

plot Plots vectors of data.
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X = [0:0.1:2];
plot(X, X.ˆ3)

plot3 Plots curves in three-dimensional space.
t = [0:0.1:30];
plot3(t, t.*cos(t), t.*sin(t))

polar Polar-coordinate plot command.
theta = (0:0.01:2)*pi; rho = theta; polar(theta, rho)

print Sends the contents of the current figure window to the printer or to a file.
print
print -deps picture.eps

quiver Plots a (numerical) vector field in the plane.
[x, y] = meshgrid(-4:0.5:4, -4:0.5:4);
quiver(x, y, x.*(y - 2), y.*x); axis tight

semilogy Creates a semi-log plot, with the logarithmic scale along the vertical axis.
x = 0:0.1:12; semilogy(x, exp(x))

set Sets properties of a figure.
set(gcf, ’Color’, [0, 0.8, 0.8])

subplot Breaks the figure window into a grid of smaller plots.
subplot(2, 2, 1), ezplot(’xˆ2’)
subplot(2, 2, 2), ezplot(’xˆ3’)
subplot(2, 2, 3), ezplot(’xˆ4’)
subplot(2, 2, 4), ezplot(’xˆ5’)

surf Draws a solid surface.
[X,Y] = meshgrid(-2:.1:2, -2:.1:2);
surf(X, Y, sin(pi*X).*cos(pi*Y))

text Annotates a figure, by placing text at specified coordinates.
text(x, y, ’string’)

title Assigns a title to the current figure window.
title ’Nice Picture’

xlabel Assigns a label to the horizontal coordinate axis.
xlabel(’Year’)

ylabel Assigns a label to the vertical coordinate axis.
ylabel(’Population’)

view Specifies a point from which to view a 3D graph.
ezsurf(’(xˆ2 + yˆ2)*exp(-(xˆ2 + yˆ2))’); view([0 0 1])
syms x y; ezmesh(x*y); view([1 0 0])

zoom Rescales a figure by a specified factor; zoom by itself enables use of the mouse for
zooming in or out.
zoom
zoom(4)

MATLAB Programming

any True if any element of an array is non-zero.
if any(imag(x) ˜= 0); error(’Inputs must be real.’); end
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all True if all the elements of an array are non-zero.

break Breaks out of a for or while loop.

case Used to delimit cases after a switch statement.

computer Outputs the type of computer on which MATLAB is running.

dbclear Clears breakpoints from a file.
dbclear all

dbcont Returns to an M-file after stopping at a breakpoint.

dbstep Executes an M-file line-by-line after stopping at a breakpoint.

dbstop Inserts a breakpoint in a file.
dbstop in <filename> at <linenumber>

dbquit Terminates an M-file after stopping at a breakpoint.

dos Runs a command from the operating system, saving the result in a variable. Similar to
unix.

end Terminates an if, for, while, or switch statement.

else Alternative in a conditional statement. See if.

elseif Nested alternative in a conditional statement. See the online help for if.

error Displays an error message and aborts execution of an M-file.

find Reports indices of non-zero elements of an array.
n = find(isspace(mystring));
if ˜isempty(n)

firstword = mystring(1:n(1)-1);
restofstring = mystring(n(1)+1:end);

end

for Begins a loop. Must be terminated by end.
close; axes; hold on
t = -1:0.05:1;
for k = 0:10

plot(t, t.ˆk)
end

function Used on the first line of an M-file to make it a function M-file.
function y = myfunction(x)

if Allows conditional execution of MATLAB statements. Must be terminated by end.
if (x >= 0)

sqrt(x)
else

error(’Invalid input.’)
end

input Prompts for user input.
answer = input(’Please enter [x, y] coordinates: ’)

isa Checks whether an object is of a given class (double, sym, etc.).
isa(x, ’sym’)

ischar True if an array is a character string.

isempty True if an array is empty.
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isequal Checks whether two arrays are equal. Unlike ==, does not produce an error
message if the arrays have different sizes.
isequal([1 2], [1 2 3])

isfinite Checks whether elements of an array are finite.
isfinite([1 0 1]./[1 0 0])

ishold True if hold on is in effect.

isinf Checks whether elements of an array are infinite.
isinf([1 0 1]./[1 0 0])

isletter Checks whether elements of a string are letters of the alphabet.
str = ’remove my spaces’; str(isletter(str))

isnan Checks whether elements of an array are “not-a-number” (which results from inde-
terminate forms like 0/0).
isnan([-1 0 1]/0)

isnumeric True if an object is of a numerical class.

ispc True if MATLAB is running on a Windows computer.

isreal True if an array consists only of real numbers.

isspace Checks whether elements of a string are spaces, tabs, etc.

isunix True if MATLAB is running on a UNIX computer.

keyboard Returns control from an M-file to the keyboard. Useful for debugging M-files.

mex Compiles a MEX program.

mlint Checks an M-file for common syntax errors.
mlint mymfile

nargin Returns the number of input arguments passed to a function M-file.
if (nargin < 2); error(’Wrong number of arguments’); end

nargout Returns the number of output arguments requested from a function M-file.

otherwise Used to delimit an alternative case after a switch statement.

pause Suspends execution of an M-file until the user presses a key.

return Terminates execution of an M-file early, or returns to an M-file after a keyboard
command.
if abs(err) < tol; return; end

switch Alternative to if that allows branching to more than two cases. Must be termi-
nated by end.
switch num
case 1

disp(’Yes.’)
case 0

disp(’No.’)
otherwise

disp(’Maybe.’)
end

unix Runs a command from the operating system, saving the result in a variable. Similar
to dos.

varargin Used in a function M-file to handle a variable number of inputs.
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varargout Used in a function M-file to allow a variable number of outputs.

warning Displays a warning message.
warning(’Taking the square root of negative number.’)

while Repeats a block of commands until a condition fails to be met. Must be terminated
by end.
mysum = 0;
x = 1;
while x > eps

mysum = mysum + x;
x = x/2;

end
mysum

Simulink Commands

find_system Finds name of desired Simulink system.
find_system(gcs, ’Type’, ’block’)

gcs “Get current system.” Returns name of current Simulink model.

get_param Gets parameters of a Simulink block or system.

open_system Opens a Simulink model.

set_param Sets parameters of a Simulink block or system.

sim Runs a Simulink model.
sim(’model’, [0, 20])

simlp Solves a linear programming problem.
simlp([-1 -1], [1 4; 2 3; 4 1], [3; 2; 3])

simplot Plots data in the style of a Simulink Scope window. Similar to plot in most
respects.

simulink Opens the Simulink library.

Simulink Blocks

Algebraic Constraint (Math Operations Library) Equation solver like fzero.

Clock (Sources Library) Outputs the simulation time.

Constant (Sources Library) Outputs a specified constant.

Demux (Signal Routing Library) Disassembles a vector signal into its components.

From Workspace (Sources Library) Takes input from the MATLAB Workspace.

Gain (Math Operations Library) Multiplies by a constant or a constant matrix.

Integrator (Continuous Library) Computes the definite integral, using a specified initial con-
dition.

Math Function (Math Operations Library) Computes exponentials, logarithms, etc.

Mux (Signal Routing Library) Assembles scalar signals into a vector signal.

Polynomial (Math Operations Library) Evaluates a polynomial function.

Product (Math Operations Library) Multiplies or divides signals. Can also invert matrix
signals.
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Ramp (Sources Library) Outputs a function that is initially constant and then increases lin-
early starting at the specified time.

Scope (Sinks Library) Plots a signal as a function of time.

Sine Wave (Sources Library) Outputs a sine wave. You can adjust the amplitude, frequency,
and phase.

Sum (Math Operations Library) Adds or subtracts inputs.

To Workspace (Sinks Library) Outputs a signal to the Workspace.

Trigonometric Function (Math Operations Library) Computes trigonometric or hyperbolic
functions.

Unit Delay (Discrete Library) Useful in modeling difference or differential/difference equa-
tions.

XY Graph (Sinks Library) Plots one signal against another.
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’*’, 70
’+’, 70
’-’, 70
’--’, 70
’:’, 70
*, 9, 287
,, 11, 45, 288
., 14, 21, 24, 287
.’, 288
.*, 14, 52, 287
..., 38, 47, 109, 288
./, 14, 52
.ˆ, 13, 24, 52, 288
/, 287
:, 13, 53, 90, 96, 254, 265, 288
;, 14, 15, 24, 34, 35, 41, 45, 60, 77, 288
=, 18, 45
==, 87, 92, 99, 299
?, 4
@, 16, 33, 49, 65, 97, 98, 288
%, 32, 51, 288
%%, 32, 36, 104, 288
&, 87, 88
\, 53, 70, 245, 287
ˆ, 287
|, 87, 88
˜, 88, 89
˜=, 89

aborting calculations, 9
abs, 86, 288
accuracy, floating-point, 93
acos, 288
activate, 127
Add, 119
addition, 8
addpath, 29, 33, 289
agribusiness, 171
air resistance, 202, 203, 279
Algebraic Constraint, 300
all, 89, 298

amperes, 200
amplitude, 78
animation, 77, 295
anonymous function, 16, 18, 22, 49, 65,

97, 98, 288
anonymous-function, 33
ans, 8, 51, 96, 206, 289
any, 89, 297
area, 294
argument, 34, 46, 51, 52, 95, 96
arithmetic, 8

complex, 51, 52
exact, 8, 11
floating-point, 11
variable-precision, 11

arithmetic operations, 207, 211
arithmetic symbols, 208, 211
array, 14, 18, 46
Array Editor, 28
asin, 55, 288
assignment, 18, 19, 87, 206
asterisk, 8
atan, 15, 43, 289
atan2, 51, 98, 289
Automation Server, 106
axes, 22, 70
axes, 294
Axes Properties..., 23
axis, 23, 44, 59–61, 68, 76, 77, 202, 294
axlimdlg, 129

backslash, 53, 81, 245
Band-Limited White Noise, 115
bank, 141
bank account, 259
bankrupt, 144
bar, 294
baseball, 203
batting average, 197, 203, 263, 283
Beethoven, 78
bell curve, 146
bessel, 289
besselj, 15, 67, 105
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bifurcation point, 155
Block Parameters, 114, 119, 121
blocks, 111
Boltzmann’s constant, 200
border, 72
braces, 96, 206, 208
brackets, 96, 206–208

curly, 208
branch line, 114
branching, 85, 87, 89, 93
break, 93, 298
breakpoint, 100, 212, 215
built-in constant, 15
built-in function, 15, 211
bulb, 132
bulls-eye, 197
ButtonDownFcn, 130
Bytes, 18

C, xi, xiii, 101
calculus, 54
callback function, 123, 127–130
Camera Toolbar, 66
Captain Picard, 195
Cardassian, 195
case, 91, 208, 298
casino, 144
cd, 29, 33, 101, 289
Cell, 32, 36
cell, 32, 36, 104

corrupted, 109
cell, 94
cell array, 94, 96, 208
Cell Markers, 107
Central Limit Theorem, 146, 147
chaos, 157, 158
char, 47, 289
char array, 17, 18
Checkbox, 126, 130
chessboard, 72
Children, 72
circuit, electrical, 199
cla, 295
class, 46
clear, 18, 28, 32, 50, 289
clear variables, 211
Clock, 119, 300
close, 24, 32, 66, 295
coefficient of friction, 172
collect, 289
colon, xiv, 13, 52, 90

colon, 288
Color, 72
color, 70

background, 72
colorbar, 76
colormap, 74
colormap, 75, 76, 132, 284, 295
column, 52, 53
column vector, 13, 14, 46
comet, 76, 295
comma, 11, 45, 288
command history, 9
Command History Window, 2, 27, 30, 31,

206
command prompt, 2
Command Window, 2, 7, 18, 27, 28, 37,

38, 87, 103, 107, 108, 111
comment, 32, 36
common mistakes, 211
competing species, 201
complex arithmetic, 51, 52
complex number, 15, 21, 51, 52, 86, 88,

96
compose, 290
computer, 101, 298
computer won’t respond, 205, 211
concatenation, 47
conductivity, thermal, 176, 180
conj, 289
Constant, 203, 300
constant, built-in, 15
containers, shipping, 115
Continuous library, 112
continuous model, 201
contour, 60, 64, 79, 195, 231, 295
contour plot, 60
contourf, 133, 256, 295
convex set, 169
cos, 15, 289
cosh, 289
cot, 289
crane, 115
ctranspose, 13, 15, 290
CTRL+C, 9, 37, 92, 211
CTRL+ENTER, 41, 107, 109
current directory, 28, 29, 31, 33, 39
Current Directory Browser, 2, 18, 27–29,

31
current, electrical, 200
CurrentAxes, 72
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curve, 79
level, 60

cylindrical coordinates, 64

D, 54, 290
damped harmonic oscillator, 111
dashed line, 70
data class, 18, 46, 49
Data Cursor, 66
data type, 94
datenum, 284
dbclear, 100, 212, 298
dbcont, 100, 212, 298
dblquad, 55
dbquit, 100, 298
dbstep, 100, 298
dbstop, 100, 212, 298
deal, 97
debug, 41, 100, 212
debugger, 31, 212
default variables, 57
definite integral, 54
definitions, conflicting, 206
delete, 37, 101, 290
delimiters, 207, 211
demo, 5
Demux, 300
Denver, Colorado, 203
Derivative, 115
derivative, 54, 79
descendents, 72
Desktop, xiii, 2, 3, 6, 7, 18, 27, 28, 111,

207
Desktop, 27
det, 81, 245, 290
determinant, 82, 246
diag, 253, 290
dialog box, 130
diary, 35, 37
diary, 37, 290
diff, 54, 290
difference equation, 201
differential equation, 111, 115, 201
differential/difference equation, 186, 301
differentiation, 54
diffusion coefficient, 176
diffusion equation, 175
digit, 19, 43
digits, 12
dingbats, xiv
diode, 200

dir, 28, 101, 284, 290
Dirichlet boundary condition, 176
discrete model, 201
discriminant, 224
disp, 38, 45, 98, 99, 141, 257, 290
display pane, 4
division, 8, 207
doc, 4, 290
Dock, 27
documentation, 5
doomsday, 202, 277
DOS, 101
dos, 101, 102, 298
dotted line, 70
double, 20, 47, 48, 290
double array, 17, 18
double-precision, 8, 18
down-arrow key, 9, 30
dsolve, 58, 201, 273, 290
dynamics, 149

e, 288
earned run average, 203
echo, 33, 35–38, 41, 290
Edit, 23
edit, 31, 85, 284, 290
Edit Text, 125, 127, 129
editing input, 9
Editor/Debugger, 31, 36, 41, 86, 100, 103,

104, 126–128, 212, 215, 216
editpath, 29
eig, 53, 142, 249, 290
eigenpair, 53
eigenvalue, 53, 83, 142, 187, 197, 265
eigenvector, 53, 83, 142, 187
element, 14, 52
element-by-element, 14, 24, 52
else, 85, 86, 89, 256, 298
elseif, 86–88, 92, 298
Enable Cell Mode, 32
end, 35, 86, 89, 91–93, 256, 291, 298
energy

kinetic, 117
potential, 117

engineering, 115
eps, 288
equal sign, 18, 45
erf, 15, 289
error, 19, 105, 241

syntax, 9
error, 95, 98, 99, 284, 298
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error function, 289
error message, 9, 205, 214, 284

plotting, 209
error messages, multiple, 209
errors, common, 9
eval, 97, 129, 291
Evaluate Cell, 41
Evaluate Current Cell, 32
evaluation, 97

suppressing, 48, 49
exact arithmetic, 8, 11
exchange matrix, 160
execute, 31
exp, 10, 14, 15, 289
expand, 10, 291
expm, 14, 289
exponential function, 14

matrix, 14
exponential growth, 201
exponential growth/decay, 150
expression, 48
external program, 101
extinct, 150
eye, 53, 291
ezcontour, 61, 295
ezcontourf, 132, 133
ezmesh, 64, 65, 295
ezplot, 22, 25, 44, 59–61, 63, 94, 295
ezplot3, 63, 295
ezsurf, 64, 65, 243, 295

factor, 10, 47, 222, 291
factorial, 35
factorial, 80, 241
Feigenbaum parameter, 157
feval, 98, 291
field, vector, 62
figure, 77

current, 66
figure, 37, 39, 42, 66, 108, 295
Figure Palette, 67, 70
Figure Toolbar, 67
figure window, 6
file extension, 28, 31, 114, 123, 126, 292
fill, 72, 73, 265, 295
find, 291, 298
find_system, 121, 300
findobj, 72, 129, 295
finite difference, 176
finite element method, 182
flag

French, 83
Italian, 83

flipdim, 75
fliplr, 75
flipud, 75
floating-point arithmetic, 8, 11
floating-point number, 46, 48
fminbnd, 291
FontName, 69, 71
FontSize, 69, 70
FontWeight, 69
football coach, 198
fopen, 102
for, 35, 39, 73, 85, 87, 92, 93, 257, 298
forced oscillations, 115
format, 30, 32, 33, 291
format long, 8
format short, 8
Fortran, xi, xiii, 101
fprintf, 102
fractal, 285
fraction, 8
frequency, 78
friction, 172
From Workspace, 300
Function, 119
function, 48

built-in, 15
user-defined, 16

function, 34, 94, 263, 298
function handle, 17, 18, 46, 49, 97, 98,

288
function M-file, 31, 33, 49, 50, 85, 94, 95
Fundamental Theorem of Linear Program-

ming, 169
fzero, 20, 21, 44, 200, 225, 271, 291

Gain, 113, 119, 300
Galileo, 202
gamma, 15, 80, 241, 289
gamma function, 80, 289
gca, 70, 72, 295
gcbf, 129
gcbo, 129
gcf, 66, 71, 122, 295
gcs, 121, 300
genotype, 82, 83
geometric series, 57, 259
get, 71, 72, 128, 129, 295
get_param, 120, 300
getframe, 77, 295



306 Index

ginput, 67, 99, 100, 296
gradient, 291
graph, 44
graph2d, 59
graph3d, 59
Graphical User Interface, xiii
graphics, 22, 38, 59, 66

customizing, 71
M-book, 108

gravity, 202
Greek letters, 70
grid, 296
gtext, 296
GUI, xiii, 123–130
GUIDE, 123, 125–129
guide, 123, 291
Gwynn, Tony, 197

half-life, 195
handle, 71, 72, 128, 129
heat equation, 131, 175
heat flow, 175
helix, 63
help, 3
help, 4, 5, 10, 23, 34, 51, 108, 209, 291
Help Browser, 4, 5, 58, 68, 70
Help Navigator, 4
help text, 46, 47, 51
helpdesk, 5, 68
helpwin, 5
hist, 296
histogram, 145, 198
hold, 25, 39, 42, 66, 76, 77, 99, 100, 296
homogeneous equation, 111
HTML, 35, 36, 103

i, 15, 20, 52, 288
if, 85–89, 91–93, 95, 256, 298
illumatons, 195
illumination, 131
im2frame, 255
imag, 289
image, 74
image, 72, 74–76, 204, 255, 296
imagesc, 76, 204, 284, 296
imaginary number, 52
implicit plot, 61
Import Wizard, 102
improper integral, 55
imread, 74, 296
imwrite, 76, 255, 296

increment, 13
fractional, 13
negative, 13

ind2rgb, 74
indefinite integral, 54, 236
indeterminate form, 89
indexed image, 74
Inf, 15, 56, 288
infinite loop, 92
inhomogeneous equation, 115
initial condition, 114, 115
initial value, 201
initialize variables, 211
inline, 16, 33, 49, 291
inline function, 18, 46, 49, 97, 98
inline object, 17, 18
input, 7, 51, 95, 96

editing, 9
input, 38, 99, 130, 298
input-output model, 160
inputdlg, 130
Insert Cell Divider, 32
Insert Text Markup, 36
installation, 2
int, 47, 49, 54, 55, 291
int32, 95
integral, 79

definite, 54
improper, 55
indefinite, 54, 236
multiple, 55
symbolic, 79

Integrator, 112, 114, 115, 119, 203, 300
interest, 196
interest rate, 138, 260
interrupting calculations, 211
intersection point, 44
inv, 82, 248, 291
inverse, 248
InvertHardcopy, 122
isa, 298
ischar, 95, 298
isempty, 99, 298
isequal, 92, 99, 299
isfinite, 284, 299
ishold, 99, 299
isinf, 299
isletter, 299
isnan, 299
isnumeric, 95, 96, 299
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ispc, 101, 299
isreal, 299
isspace, 299
isunix, 101, 299

j, 288
jacobian, 291
Julia set, 204, 285

keyboard, 42, 99, 100, 212, 299
keyboard shortcuts, 27
kinetic energy, 117
Kirchhoff’s Current Law, 200
Kirchhoff’s Voltage Law, 200

label, 23
Lagrangian, 117
Lagrangian mechanics, 117
LATEX, 36, 131
Launch Pad, 111
Layout Editor, 123–130
lcm, 197
least common multiple, 197
left-arrow key, 9, 30
left-matrix-divide, 81
legend, 69, 108, 296
lemniscate, 61, 69
length, 50, 90, 291
Leontief model, 160
Leontief, Wassily, 160
level curve, 60, 79, 232
limit, 55

one-sided, 55
limit, 55, 238, 291
Line, 72
line

dashed, 70
dotted, 70
solid, 70

line, 72
line style, 70
linear algebra, 12, 82, 141, 160
linear economic model, 160
linear inequality, 165
linear programming, 131, 165, 198, 268
LineStyle, 72
LineWidth, 274
linprog, 169
linspace, 178, 184, 291
Linux, 1, 101
Listbox, 126

ln, 15
load, 28, 102, 291
loan, 138
local variable, 34, 50
location of MATLAB, 2
log, 10, 15, 43, 52, 56, 289
logical, 105
logical array, 88
logical expression, 87, 89
logistic constant, 154
logistic growth, 152, 201
loglog, 200, 273, 296
lookfor, 4, 29, 292
loop, 35, 39, 73, 85, 92, 93
loops, avoiding, 90, 91, 197
lowercase, 19, 209, 212
ls, 28, 292

M-book, 35, 40, 103, 108
M-books, enabling, 40
M-file, xiii, 16, 27, 31, 39, 49–51, 68, 85,

94, 99, 100, 108, 120, 123, 126,
127, 206

function, 31, 33, 49, 51
problems with, 205
script, 31, 32, 35, 50

Macintosh, 1
Maple, 58
maple, 58, 292
Maple kernel, 58, 292
Math Function, 300
Math library, 202
Math Operations library, 113, 119
mating, 83
MATLAB Desktop, 2
matrix, 14, 46, 52, 53
matrix multiplication, 14
max, 284, 292
mean, 180, 292
median, 292
memory, managing, 211
menu bar, 2, 4, 27, 66, 126
Menu Editor, 126
menu items, xiv
mesh, 64, 296
meshgrid, 60, 61, 64, 231, 296
mex, 299
mhelp, 58, 292
Microsoft Word, xiii, 106
millionaire, 196
min, 292
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minus sign, 109
mismatched delimiters, 207, 211
mistake, 205
mkdir, 29
mldivide, 53
mlint, 212, 299
model window, 111
Monte Carlo simulation, 131, 144, 197,

258
monthly payment, 139
more, 4, 109, 292
more on, 23
mortgage, 131, 138
movie, 81, 84, 192, 295
movie, 77, 192, 244, 255, 296
movie2avi, 77
movieview, 77, 192, 296
multiple curves, 25
multiple integral, 55
multiplication, 8
Mux, 300

NaN, 89, 288
nargin, 95, 299
nargout, 95, 96, 299
Newton, 202
nodesktop, 28
noise, 115
non-singular, 82
Notebook, 41
notebook, 40, 106, 292
num2str, 47, 99, 292
numerical differentiation, 115
numerical integration, 55, 115
numerical ODE solver, 202
numerical output, 10
numerical solution, 175

objective function, 170
ode45, 49, 172, 182, 275, 276, 292
Ohm’s Law, 200
ohms, 200
ones, 53, 67, 89, 90, 254, 292
online help, 3, 47, 131
open, 292
open_system, 300
openvar, 28
optimal value, 136
Optimization Toolbox, 169
order of integration, 55
ordinary differential equation, 182

oscillation, 173
otherwise, 91, 299
output, 7, 51, 95, 96

numerical, 10
suppressing, 15
symbolic, 10
unexpected, 205
wrong, 205

overloaded, 47

pane, 4
parabolic trajectory, 279
parameter, 59
parametric plot, 59
parametric surface, 64
parentheses, 87, 206, 207
parsing, 95
partial derivative, 54
partial differential equation, 175, 179, 184
patch, 214, 296
path, 29, 33
path, 29, 292
pathtool, 29, 292
pause, 37, 41, 42, 99, 299
PDE Toolbox, 182
pdepe, 184
PDF, 68, 111
peaceful coexistence, 202, 277
pendulum, 117, 131, 172, 202, 277
percent sign, 32, 51
period, 14
periodic cycle, 156, 158
phase portrait, 202
pi, 11, 12, 15, 288
pie, 296
pitch, of sound, 78
pixel, 74
platforms, 1
plot

contour, 60
log-log, 296
parametric, 59
semi-log, 297
three-dimensional, 62
two-dimensional, 59

plot, 24, 25, 39, 44, 59, 62, 70, 73, 76,
206, 214, 296

Plot Browser, 67
plot style, 70
plot3, 62, 70, 297
plotting several functions, 25
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plottools, 67
polar, 297
polar coordinates, 51, 64, 96
Polynomial, 300
polynomial, 43
population density, 155
population growth, 150, 201
Popup Menu, 126–128
PostScript, 39
potential energy, 117
PowerPoint, 103
precedence, 207, 211
pretty, 38, 250, 292
pretty print, 38
previously saved M-file, 210
prima donna, 199
prime number, 47
principal, 138
print, 38, 39, 42, 122, 297
Printable Documentation, 68
printing, suppressing, 15
problems, 205
prod, 56, 89, 90, 292
Product, 119, 300
product, element-by-element, 52
Professional Version, 1, 58
profit, 144, 165
prompt, 35
Property Editor, 67, 68, 70–72
Property Inspector, 124–127, 129
publish, 32
publish, xiii, 27, 35, 36, 41, 103, 105,

131, 293
punct, 288
Push Button, 125, 129
pwd, 28, 101, 293

quad, 55
quad8, 293
quadl, 55, 80, 237, 293
quit, 293
quit MATLAB, 6
quiver, 62, 297
quote marks, 207

Radio Button, 126, 130
Ramp, 301
rand, 144, 256, 293
randn, 293
random number, 144
range, 23

rank, 81
rank, 81, 247, 293
real, 289
rectangle, 72
relational operator, 87–89, 92
relop, 87, 88
rescale, 297
reshape, 90
resistor, 200
return, 42, 90, 212, 299
RGB, 72, 74
right-arrow key, 9, 30
right-click, 30
rmpath, 33
roots, 293
round, 293
round-off error, 288
row, 52, 53
row vector, 13, 14, 34, 46

saddle point, 62
saddle surface, 64
save, 28, 102, 293
Save As..., 39
scalar, 14, 18, 46
scale-factor, 62
Scope, 114, 115, 119, 122, 301

rescaling axes in, 115
script M-file, 31, 32, 34, 35, 50
sec, 289
sech, 289
semicolon, 14, 15, 24, 25, 34, 35, 41, 45,

60, 77, 288
semilogy, 297
sensitivity coefficient, 186
sequence of evaluation, 211
set, 70–73, 128, 129, 297
Set Path, 29
set_param, 121, 300
sign, 86, 289
signal, 112
sim, 121, 300
simlp, 169, 268, 300
simple, 10, 43, 222, 293
simplify, 10, 43, 222, 293
simplot, 122, 300
simulation, 264

Monte Carlo, 131, 144, 258
Simulink, xi, xiii, 112, 120, 131, 158, 182,

188, 203, 277
simulink, 111, 300
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Simulink Toolbox, 169
Simulink Library Browser, 111
Simulink library window, 111
sin, 4, 15, 18, 54, 289
Sine Wave, 301
singular, 247
sinh, 289
Sinks library, 114
size, 67, 89, 90, 293
slash, 52
slash, 30
smiley face, 109
Solaris, 101
solve, 20, 21, 44, 52, 58, 220, 293
solving equations, 20
sound, 78
sound, 77, 78, 293
soundsc, 78
Sources library, 115
space, in argument of command, 208
specgraph, 59
species, 150
spelling error, 205, 209
sphere, 64
spherical coordinates, 64
sqrt, 8, 15, 52, 289
square, 23, 60, 61
sscanf, 101
starting MATLAB, 2
Static Text, 125
steady state, 179, 186
stock market, 196
str2num, 47, 101, 293
strcmp, 92
string, 12, 20, 46, 47, 49, 70, 207, 208
struct, 94, 105
structure array, 94, 105
Student Version, xiv, 1, 292
style, line, 70
subfunction, 94
submatrix, 52
submenu items, xiv
subplot, 67, 297
subs, 11, 50, 230, 293
substitution, 50
subtraction, 8
Sum, 113, 119, 203, 301
sum, 56, 293
summation sign, 70
suppressing output, 34, 35, 41, 45

surf, 64, 178, 297
surface, 72
switch, 85, 91, 208, 299
sym, 12, 47, 48, 53, 80, 223, 293
sym object, 17
symbol, 70
Symbol font, 71
symbolic, 10
symbolic expression, 11, 22, 46, 48, 49
Symbolic Math Toolbox, xiv, 2, 10, 11, 43,

54, 58, 79, 93, 195
symbolic output, 10
symbolic variable, 18
syms, 10, 12, 22, 48, 294
symsum, 56, 58, 93, 294
syntax error, 205, 207, 209

Tag, 127
tan, 15, 289
tanh, 289
taylor, 57, 242, 294
Taylor polynomial, 57, 80
TEX, 70
text, 69, 297
thermal conductivity, 176, 180
tick mark, 70
tight, 23
time-lapse photo, 195
title, 23, 25, 39, 61, 68, 69, 108, 297
title bar, 2
To Workspace, 301
Toggle Button, 125, 130
tool bar, 2, 4, 27, 31, 66
toolboxes, 2, 5, 29, 131
traffic flow, 131, 185
transpose, 13, 15
transpose, 15, 294
Trigonometric Function, 119, 202, 301
type, 49, 85, 94, 101, 105, 266, 294

uicontextmenu, 123
uicontrol, 123
uiimport, 102
uimenu, 123
uint32, 95
underscore, 19
Unit Delay, 301
UNIX, 1, 101, 299
unix, 101, 102, 299
up-arrow key, 9, 30
uppercase, 19, 209, 212
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user-defined function, 16
User-Defined Functions library, 119

valid name, 19
varargin, 95, 96, 208, 299
varargout, 95, 97, 208, 300
variable, 8, 10, 19

symbolic, 10
variable-precision arithmetic, 11, 12
variables

clearing, 205
default, 57

vector, 13, 16, 21, 24, 52
column, 14, 46
element of, 52
row, 14, 46

vector field, 62
vectorize, 47, 294
vectorized, 16
Verhulst, 154
versions, 1
vertex, 169
vertical range, 23
view, 66, 297
viewpoint, 66
voltage, 200
volts, 200
vpa, 12, 294

warning, 205, 226
warning, 98, 300
watts, 132
wavread, 78
wavwrite, 78
web, 103, 294
which, 206, 294
while, 92, 93, 300
whos, 17, 28, 46, 88, 294
window, figure, 66
Windows, 1, 101, 299
Windows 2000, 1
Windows Explorer, 106
Windows NT, 1
Windows XP, 1
word processor, 106
Word, Microsoft, 39
Workspace, 28, 46, 50, 51, 102, 211
workspace, 18, 28
Workspace Browser, 2, 18, 27, 28, 46
wrap, 38
wrong output, 205

XData, 72
xlabel, 23, 61, 69, 108, 178, 297
XTick, 70
XTickLabel, 70
XY Graph, 203, 301

YData, 72
ylabel, 23, 61, 69, 108, 178, 297

zeros, 53, 254, 294
zlabel, 69, 178
zoom, 66, 297
zoom in, 66
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